Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24730 by Tinkutara last updated on 25/Nov/17

Consider a uniform square plate of side  a and mass m. The moment of inertia  of this plate about an axis perpendicular  to its plane and passing through one of  its corners is

$$\mathrm{Consider}\:\mathrm{a}\:\mathrm{uniform}\:\mathrm{square}\:\mathrm{plate}\:\mathrm{of}\:\mathrm{side} \\ $$$${a}\:\mathrm{and}\:\mathrm{mass}\:{m}.\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{plate}\:\mathrm{about}\:\mathrm{an}\:\mathrm{axis}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{its}\:\mathrm{plane}\:\mathrm{and}\:\mathrm{passing}\:\mathrm{through}\:\mathrm{one}\:\mathrm{of} \\ $$$$\mathrm{its}\:\mathrm{corners}\:\mathrm{is} \\ $$

Commented by ajfour last updated on 25/Nov/17

Commented by ajfour last updated on 25/Nov/17

I_x =I_y =((ma^2 )/(12))  so   I_z =I_x +I_y =((ma^2 )/6)  I_(z′) =I_z +m((a/(√2)))^2 =((ma^2 )/6)+((ma^2 )/2)     =((2ma^2 )/3) .

$${I}_{{x}} ={I}_{{y}} =\frac{{ma}^{\mathrm{2}} }{\mathrm{12}} \\ $$$${so}\:\:\:{I}_{{z}} ={I}_{{x}} +{I}_{{y}} =\frac{{ma}^{\mathrm{2}} }{\mathrm{6}} \\ $$$${I}_{{z}'} ={I}_{{z}} +{m}\left(\frac{{a}}{\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} =\frac{{ma}^{\mathrm{2}} }{\mathrm{6}}+\frac{{ma}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:=\frac{\mathrm{2}{ma}^{\mathrm{2}} }{\mathrm{3}}\:. \\ $$

Commented by mrW1 last updated on 25/Nov/17

I_(z′) =∫_0 ^( a) ∫_0 ^( a) ρ(x^2 +y^2 )dxdy  =ρ∫_0 ^( a) ((a^3 /3)+ay^2 )dy  =ρ((a^3 /3)×a+a×(a^3 /3))  =((2ρa^4 )/3)  =((2ma^2 )/3)

$${I}_{{z}'} =\int_{\mathrm{0}} ^{\:{a}} \int_{\mathrm{0}} ^{\:{a}} \rho\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy} \\ $$$$=\rho\int_{\mathrm{0}} ^{\:{a}} \left(\frac{{a}^{\mathrm{3}} }{\mathrm{3}}+{ay}^{\mathrm{2}} \right){dy} \\ $$$$=\rho\left(\frac{{a}^{\mathrm{3}} }{\mathrm{3}}×{a}+{a}×\frac{{a}^{\mathrm{3}} }{\mathrm{3}}\right) \\ $$$$=\frac{\mathrm{2}\rho{a}^{\mathrm{4}} }{\mathrm{3}} \\ $$$$=\frac{\mathrm{2}{ma}^{\mathrm{2}} }{\mathrm{3}} \\ $$

Commented by Tinkutara last updated on 25/Nov/17

But I_x =I_y =4×((ma^2 )/(12))=((ma^2 )/3)  ?

$${But}\:{I}_{{x}} ={I}_{{y}} =\mathrm{4}×\frac{{ma}^{\mathrm{2}} }{\mathrm{12}}=\frac{{ma}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$? \\ $$

Commented by Tinkutara last updated on 25/Nov/17

But whats wrong with which I posted?

$${But}\:{whats}\:{wrong}\:{with}\:{which}\:{I}\:{posted}? \\ $$

Commented by ajfour last updated on 25/Nov/17

why the 4 ?

$${why}\:{the}\:\mathrm{4}\:? \\ $$

Commented by Tinkutara last updated on 25/Nov/17

Because of symmetry there are 4  rods and each have ((ml^2 )/(12))

$${Because}\:{of}\:{symmetry}\:{there}\:{are}\:\mathrm{4} \\ $$$${rods}\:{and}\:{each}\:{have}\:\frac{{ml}^{\mathrm{2}} }{\mathrm{12}} \\ $$

Commented by ajfour last updated on 25/Nov/17

its a plate or slab, there are not  any rods. further see image below.

$${its}\:{a}\:{plate}\:{or}\:{slab},\:{there}\:{are}\:{not} \\ $$$${any}\:{rods}.\:{further}\:{see}\:{image}\:{below}. \\ $$

Commented by ajfour last updated on 25/Nov/17

Commented by Tinkutara last updated on 25/Nov/17

Yes but how this ((ml^2 )/(12))?

$${Yes}\:{but}\:{how}\:{this}\:\frac{{ml}^{\mathrm{2}} }{\mathrm{12}}? \\ $$

Commented by ajfour last updated on 25/Nov/17

Commented by ajfour last updated on 25/Nov/17

dm=(m/(Lbt))(btdr)=(m/L)dr  I=∫r^2 dm = (m/L)∫_(−L/2) ^(   L/2)  r^2 dr      =(m/L)((L^3 /(24))+(L^3 /(24))) = ((mL^2 )/(12)) .

$${dm}=\frac{{m}}{{Lbt}}\left({btdr}\right)=\frac{{m}}{{L}}{dr} \\ $$$${I}=\int{r}^{\mathrm{2}} {dm}\:=\:\frac{{m}}{{L}}\int_{−{L}/\mathrm{2}} ^{\:\:\:{L}/\mathrm{2}} \:{r}^{\mathrm{2}} {dr} \\ $$$$\:\:\:\:=\frac{{m}}{{L}}\left(\frac{{L}^{\mathrm{3}} }{\mathrm{24}}+\frac{{L}^{\mathrm{3}} }{\mathrm{24}}\right)\:=\:\frac{{mL}^{\mathrm{2}} }{\mathrm{12}}\:. \\ $$

Commented by Tinkutara last updated on 26/Nov/17

Thank you Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com