Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 24739 by Tinkutara last updated on 25/Nov/17

A particle is suspended vertically  from point O by ideal string of length  L. It is given horizontal velocity ′v′.  There is vertical line AB at a distance  (L/8) from P. At some point, it leaves  circular motion and follows projectile  motion. At the instant it crosses AB,  its velocity is horizontal. Find u

$${A}\:{particle}\:{is}\:{suspended}\:{vertically} \\ $$$${from}\:{point}\:{O}\:{by}\:{ideal}\:{string}\:{of}\:{length} \\ $$$${L}.\:{It}\:{is}\:{given}\:{horizontal}\:{velocity}\:'{v}'. \\ $$$${There}\:{is}\:{vertical}\:{line}\:{AB}\:{at}\:{a}\:{distance} \\ $$$$\frac{{L}}{\mathrm{8}}\:{from}\:{P}.\:{At}\:{some}\:{point},\:{it}\:{leaves} \\ $$$${circular}\:{motion}\:{and}\:{follows}\:{projectile} \\ $$$${motion}.\:{At}\:{the}\:{instant}\:{it}\:{crosses}\:{AB}, \\ $$$${its}\:{velocity}\:{is}\:{horizontal}.\:{Find}\:{u} \\ $$

Commented by Tinkutara last updated on 25/Nov/17

Commented by ajfour last updated on 25/Nov/17

u=(√(((3(√3)+4)gL)/2)) .

$${u}=\sqrt{\frac{\left(\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{4}\right){gL}}{\mathrm{2}}}\:. \\ $$

Commented by Tinkutara last updated on 25/Nov/17

How?

$${How}? \\ $$

Commented by ajfour last updated on 25/Nov/17

Commented by ajfour last updated on 25/Nov/17

(1/2)m(u^2 −v^2 )=mgy=mgL(1+sin θ)                                     ....(i)  ((mv^2 )/L)=mgsin θ  ⇒ v^2 =gLsin θ  ..(ii)  x=(R/2)=((v^2 sin [2(90−θ)])/(2g))=Lcos θ−(L/8)  ⇒gLsin θ×((2sin θcos θ)/(2g))=L(cos θ−(1/8))  ⇒ cos θ(1−cos^2 θ)=cos θ−(1/8)  or  cos θ=(1/2)  Now from (i):   v^2 =(((√3)gL)/2)  using this in (i):  u^2 =v^2 +2gL(1+sin θ)      =(((√3)gL)/2)+2gL(1+((√3)/2))  or   u= (√(((3(√3)+4)gL)/2)) .

$$\frac{\mathrm{1}}{\mathrm{2}}{m}\left({u}^{\mathrm{2}} −{v}^{\mathrm{2}} \right)={mgy}={mgL}\left(\mathrm{1}+\mathrm{sin}\:\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({i}\right) \\ $$$$\frac{{mv}^{\mathrm{2}} }{{L}}={mg}\mathrm{sin}\:\theta\:\:\Rightarrow\:{v}^{\mathrm{2}} ={gL}\mathrm{sin}\:\theta\:\:..\left({ii}\right) \\ $$$${x}=\frac{{R}}{\mathrm{2}}=\frac{{v}^{\mathrm{2}} \mathrm{sin}\:\left[\mathrm{2}\left(\mathrm{90}−\theta\right)\right]}{\mathrm{2}{g}}={L}\mathrm{cos}\:\theta−\frac{{L}}{\mathrm{8}} \\ $$$$\Rightarrow{gL}\mathrm{sin}\:\theta×\frac{\mathrm{2sin}\:\theta\mathrm{cos}\:\theta}{\mathrm{2}{g}}={L}\left(\mathrm{cos}\:\theta−\frac{\mathrm{1}}{\mathrm{8}}\right) \\ $$$$\Rightarrow\:\mathrm{cos}\:\theta\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta\right)=\mathrm{cos}\:\theta−\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${or}\:\:\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${Now}\:{from}\:\left({i}\right):\:\:\:{v}^{\mathrm{2}} =\frac{\sqrt{\mathrm{3}}{gL}}{\mathrm{2}} \\ $$$${using}\:{this}\:{in}\:\left({i}\right): \\ $$$${u}^{\mathrm{2}} ={v}^{\mathrm{2}} +\mathrm{2}{gL}\left(\mathrm{1}+\mathrm{sin}\:\theta\right) \\ $$$$\:\:\:\:=\frac{\sqrt{\mathrm{3}}{gL}}{\mathrm{2}}+\mathrm{2}{gL}\left(\mathrm{1}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$${or}\:\:\:\boldsymbol{{u}}=\:\sqrt{\frac{\left(\mathrm{3}\sqrt{\mathrm{3}}+\mathrm{4}\right)\boldsymbol{{gL}}}{\mathrm{2}}}\:. \\ $$

Commented by Tinkutara last updated on 25/Nov/17

x=(R/2)=((v^2 sin [2(90−θ)])/(2g))=Lcos θ−(L/8)  How this L(cos θ−(1/8))?

$${x}=\frac{{R}}{\mathrm{2}}=\frac{{v}^{\mathrm{2}} \mathrm{sin}\:\left[\mathrm{2}\left(\mathrm{90}−\theta\right)\right]}{\mathrm{2}{g}}={L}\mathrm{cos}\:\theta−\frac{{L}}{\mathrm{8}} \\ $$$${How}\:{this}\:{L}\left(\mathrm{cos}\:\theta−\frac{\mathrm{1}}{\mathrm{8}}\right)? \\ $$

Commented by ajfour last updated on 25/Nov/17

see diagram, x=Lcos θ−(L/8)  since velocity is horizontal  when as a projectile mass ′m′  crosses AB so from the point  where circular motion ends  and till line AB is reached the  horizontal distance   x=v_x △t=(vsin θ)(((vcos θ)/g)).

$${see}\:{diagram},\:{x}={L}\mathrm{cos}\:\theta−\frac{{L}}{\mathrm{8}} \\ $$$${since}\:{velocity}\:{is}\:{horizontal} \\ $$$${when}\:{as}\:{a}\:{projectile}\:{mass}\:'{m}' \\ $$$${crosses}\:{AB}\:{so}\:{from}\:{the}\:{point} \\ $$$${where}\:{circular}\:{motion}\:{ends} \\ $$$${and}\:{till}\:{line}\:{AB}\:{is}\:{reached}\:{the} \\ $$$${horizontal}\:{distance}\: \\ $$$$\boldsymbol{{x}}={v}_{{x}} \bigtriangleup{t}=\left({v}\mathrm{sin}\:\theta\right)\left(\frac{{v}\mathrm{cos}\:\theta}{{g}}\right). \\ $$

Commented by Tinkutara last updated on 26/Nov/17

Thank you Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$

Commented by ajfour last updated on 27/Nov/17

θ, for a reason is acute angled..

$$\theta,\:{for}\:{a}\:{reason}\:{is}\:{acute}\:{angled}.. \\ $$

Commented by ajfour last updated on 28/Nov/17

mgL(1−cos φ)=(1/2)m(u^2 −v_1 ^2 )  For Tension T to vanish,  mgcos φ=−((mv^2 )/L)  ⇒  φ > 90° .

$${mgL}\left(\mathrm{1}−\mathrm{cos}\:\phi\right)=\frac{\mathrm{1}}{\mathrm{2}}{m}\left({u}^{\mathrm{2}} −{v}_{\mathrm{1}} ^{\mathrm{2}} \right) \\ $$$${For}\:{Tension}\:{T}\:{to}\:{vanish}, \\ $$$${mg}\mathrm{cos}\:\phi=−\frac{{mv}^{\mathrm{2}} }{{L}} \\ $$$$\Rightarrow\:\:\phi\:>\:\mathrm{90}°\:. \\ $$

Commented by mrW1 last updated on 28/Nov/17

Thank you sir!  Now I understand the question totally.  Can you find the point where the  particle comes back?

$${Thank}\:{you}\:{sir}! \\ $$$${Now}\:{I}\:{understand}\:{the}\:{question}\:{totally}. \\ $$$${Can}\:{you}\:{find}\:{the}\:{point}\:{where}\:{the} \\ $$$${particle}\:{comes}\:{back}? \\ $$

Commented by mrW1 last updated on 28/Nov/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com