Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 24831 by Eng.Firas last updated on 27/Nov/17

  ∫_1 ^2 ∫_1 ^2 ln(x+y)dx dy

1212ln(x+y)dxdy

Answered by prakash jain last updated on 27/Nov/17

∫_1 ^2 ∫_1 ^2 ln(x+y)dxdy  =∫_1 ^2 [(x+y)ln (x+y)−x]_1 ^2 dy  =∫_1 ^2 {(2+y)ln (y+2)−2−(1+y)ln (1+y)+1}dy  =∫_1 ^2 {(2+y)ln (y+2)−(1+y)ln (1+y)−1}dy  ∫_1 ^2 (2+y)ln (y+2)dy  =[ln (y+2)(((2+y)^2 )/2)−(((2+y)^2 )/4)]_1 ^2   =[(ln 4)(4^2 /2)−(4^2 /4)−(ln 3)(3^2 /2)+(3^2 /4)]  =8ln 4−8−(9/2)ln 3+(9/4)  ∫_1 ^2 (1+y)ln (y+1)dy  =[ln (y+1)(((1+y)^2 )/2)−(((1+y)^2 )/4)]_1 ^2   =(9/2)ln 3−(9/4)−(2^2 /2)ln 2+(2^2 /4)  ∫_1 ^2 (−1)dy=−1  ans=8ln 4−8−2ln 2+1−1  =16ln 2−8−2ln 2  =14ln 2−8

1212ln(x+y)dxdy=12[(x+y)ln(x+y)x]12dy=12{(2+y)ln(y+2)2(1+y)ln(1+y)+1}dy=12{(2+y)ln(y+2)(1+y)ln(1+y)1}dy12(2+y)ln(y+2)dy=[ln(y+2)(2+y)22(2+y)24]12=[(ln4)422424(ln3)322+324]=8ln4892ln3+9412(1+y)ln(y+1)dy=[ln(y+1)(1+y)22(1+y)24]12=92ln394222ln2+22412(1)dy=1ans=8ln482ln2+11=16ln282ln2=14ln28

Commented by Eng.Firas last updated on 27/Nov/17

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com