Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 24852 by nnnavendu last updated on 27/Nov/17

please prove that∫_0 ^(π/2) log(sinx)dx=−(π/2)log2                                    or  ∫_0 ^((π  )/2) log(cosx)dx=−(π/2)log2

$$\mathrm{please}\:\mathrm{prove}\:\mathrm{that}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{log}\left(\mathrm{sinx}\right)\mathrm{dx}=−\frac{\pi}{\mathrm{2}}\mathrm{log2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{or} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi\:\:}{\mathrm{2}}} \mathrm{log}\left(\mathrm{cosx}\right)\mathrm{dx}=−\frac{\pi}{\mathrm{2}}\mathrm{log2} \\ $$

Commented by Tinku Tara last updated on 28/Nov/17

sin(x)=cos ((π/2)−x)  ⇒∫_0 ^( π/2) log (cos x)  substitute  u=(π/2)−x⇒x=0,u=(π/2),x=(π/2),u=0  du=−dx  ∫_0 ^( π/2) log (cos x)=−∫_(π/2) ^0 log (sin u)du  =∫_0 ^( π/2) log (sin u)du  ∫_0 ^( π/2) log (sinx) dx=∫_0 ^(π/2) log (cos x) dx=I  2I=∫_0 ^(π/2) [log (sin x)+log (cos x)]dx  =∫_0 ^( π/2) log ((sin 2x)/2)dx  =∫_0 ^(π/2) log (sin 2x)dx−∫_0 ^(π/2) ln 2dx  ∫_0 ^(π/2) log (sin 2x)dx  2x=u⇒dx=du/2  limits change to 0 to π  =(1/2)∫_0 ^π log (sin u)du−(π/2)ln 2  =(1/2)[∫_0 ^(π/2) log (sin u)du+∫_(π/2) ^π log (sin u)du]−(π/2)ln 2  =(1/2)[I+∫_(π/2) ^π log (sin u)du]−(π/2)ln 2  t=u−(π/2)⇒u=(π/2)+t⇒sin u=cos t  dt=du, limits change to 0 to (π/2)  =(1/2)[I+∫_0 ^(π/2) log (cos t)dt]−(π/2)ln 2  2I=(1/2)[I+I]−(π/2)ln 2  I=−(π/2)ln 2

$$\mathrm{sin}\left({x}\right)=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right) \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{log}\:\left(\mathrm{cos}\:{x}\right) \\ $$$$\mathrm{substitute} \\ $$$${u}=\frac{\pi}{\mathrm{2}}−{x}\Rightarrow{x}=\mathrm{0},{u}=\frac{\pi}{\mathrm{2}},{x}=\frac{\pi}{\mathrm{2}},{u}=\mathrm{0} \\ $$$${du}=−{dx} \\ $$$$\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{log}\:\left(\mathrm{cos}\:{x}\right)=−\int_{\pi/\mathrm{2}} ^{\mathrm{0}} \mathrm{log}\:\left(\mathrm{sin}\:{u}\right){du} \\ $$$$=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{log}\:\left(\mathrm{sin}\:{u}\right){du} \\ $$$$\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{log}\:\left(\mathrm{sin}{x}\right)\:{dx}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{log}\:\left(\mathrm{cos}\:{x}\right)\:{dx}={I} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left[\mathrm{log}\:\left(\mathrm{sin}\:{x}\right)+\mathrm{log}\:\left(\mathrm{cos}\:{x}\right)\right]{dx} \\ $$$$=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \mathrm{log}\:\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{log}\:\left(\mathrm{sin}\:\mathrm{2}{x}\right){dx}−\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{ln}\:\mathrm{2}{dx} \\ $$$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{log}\:\left(\mathrm{sin}\:\mathrm{2}{x}\right){dx} \\ $$$$\mathrm{2}{x}={u}\Rightarrow{dx}={du}/\mathrm{2} \\ $$$${limits}\:\mathrm{change}\:\mathrm{to}\:\mathrm{0}\:\mathrm{to}\:\pi \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \mathrm{log}\:\left(\mathrm{sin}\:{u}\right){du}−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{log}\:\left(\mathrm{sin}\:{u}\right){du}+\int_{\pi/\mathrm{2}} ^{\pi} \mathrm{log}\:\left(\mathrm{sin}\:{u}\right){du}\right]−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{I}+\int_{\pi/\mathrm{2}} ^{\pi} \mathrm{log}\:\left(\mathrm{sin}\:{u}\right){du}\right]−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$${t}={u}−\frac{\pi}{\mathrm{2}}\Rightarrow{u}=\frac{\pi}{\mathrm{2}}+{t}\Rightarrow\mathrm{sin}\:{u}=\mathrm{cos}\:{t} \\ $$$${dt}={du},\:\mathrm{limits}\:\mathrm{change}\:\mathrm{to}\:\mathrm{0}\:\mathrm{to}\:\frac{\pi}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{I}+\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{log}\:\left(\mathrm{cos}\:{t}\right){dt}\right]−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$$\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}\left[{I}+{I}\right]−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$$${I}=−\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com