All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 24852 by nnnavendu last updated on 27/Nov/17
pleaseprovethat∫0π2log(sinx)dx=−π2log2or∫0π2log(cosx)dx=−π2log2
Commented by Tinku Tara last updated on 28/Nov/17
sin(x)=cos(π2−x)⇒∫0π/2log(cosx)substituteu=π2−x⇒x=0,u=π2,x=π2,u=0du=−dx∫0π/2log(cosx)=−∫π/20log(sinu)du=∫0π/2log(sinu)du∫0π/2log(sinx)dx=∫0π/2log(cosx)dx=I2I=∫0π/2[log(sinx)+log(cosx)]dx=∫0π/2logsin2x2dx=∫0π/2log(sin2x)dx−∫0π/2ln2dx∫0π/2log(sin2x)dx2x=u⇒dx=du/2limitschangeto0toπ=12∫0πlog(sinu)du−π2ln2=12[∫0π/2log(sinu)du+∫π/2πlog(sinu)du]−π2ln2=12[I+∫π/2πlog(sinu)du]−π2ln2t=u−π2⇒u=π2+t⇒sinu=costdt=du,limitschangeto0toπ2=12[I+∫0π/2log(cost)dt]−π2ln22I=12[I+I]−π2ln2I=−π2ln2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com