Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147945 by Gbenga last updated on 24/Jul/21

25^x +5x=e^5  (can this be solved)

25x+5x=e5(canthisbesolved)

Commented by mr W last updated on 24/Jul/21

x=(e^5 /5)−((W(2×5^(((2e^5 )/5)−1) ln 5))/(2ln 5))≈1.536821

x=e55W(2×52e551ln5)2ln51.536821

Commented by Gbenga last updated on 24/Jul/21

thanks

thanks

Answered by Canebulok last updated on 24/Jul/21

Solution:  ⇒ 25^x  = e^5 −5x  ⇒ (e^5 −5x)∙5^(−2x)  = 1  ⇒ (e^5 −5x)e^(−2x∙ln(5))  = 1  By multiplying both sides by “ ((2∙ln(5))/5) ”,  ⇒ (((2e^5 ∙ln(5))/5)−2x∙ln(5))e^(−2x∙ln(5))  = ((2∙ln(5))/5)  ⇒ (((2e^5 ∙ln(5))/5)−2x∙ln(5))e^(((2e^5 ∙ln(5))/5)−2x∙ln(5))  = ((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5)   By Lambert W.function,  ⇒ (((2e^5 ∙ln(5))/5)−2x∙ln(5)) = W(((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5) )  ⇒ 2x∙ln(5) = ((2e^5 ∙ln(5))/5)−W(((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5) )  ⇒ x = ((((2e^5 ∙ln(5))/5)−W(((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5) ))/(2∙ln(5)))  ⇒ x = (e^5 /5)−((W(((2∙ln(5))/5)∙e^((2e^5 ∙ln(5))/5) ))/(2∙ln(5))) ≈ 1.536821146     Solution by: Kevin

Solution:25x=e55x(e55x)52x=1(e55x)e2xln(5)=1Bymultiplyingbothsidesby2ln(5)5,(2e5ln(5)52xln(5))e2xln(5)=2ln(5)5(2e5ln(5)52xln(5))e2e5ln(5)52xln(5)=2ln(5)5e2e5ln(5)5ByLambertW.function,(2e5ln(5)52xln(5))=W(2ln(5)5e2e5ln(5)5)2xln(5)=2e5ln(5)5W(2ln(5)5e2e5ln(5)5)x=2e5ln(5)5W(2ln(5)5e2e5ln(5)5)2ln(5)x=e55W(2ln(5)5e2e5ln(5)5)2ln(5)1.536821146Solutionby:Kevin

Commented by Gbenga last updated on 24/Jul/21

nice solution

nicesolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com