Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 25002 by ajfour last updated on 30/Nov/17

Commented by ajfour last updated on 30/Nov/17

Solution to Q.24966

SolutiontoQ.24966

Answered by ajfour last updated on 30/Nov/17

x^2 −11y^2 −16xy−12x+6y+21=0  Focus =?  (x−a)^2 −11(y−b)^2 −16(x−a)(y−b)+c=0  ⇒x^2 −11y^2 −16xy+(−2a+16b)x   +(22b+16a)+(a^2 −11b^2 −16ab+c)=0  ⇒    −2a+16b=−12    ...(i)              22b+16a=6        ...(ii)     a^2 −11b^2 −16ab+c=21  ...(iii)  ⇒   a=(6/5) ,  b=−(3/5) , c=12  so    (x−(6/5))^2 −11(y+(3/5))^2            −16(x−(6/5))(y+(3/5))+12=0                                          .....(a)  let  x−(6/5)=Xcos θ−Ysin θ          y+(3/5)=Xsin θ+Ycos θ  upon substitution in (a):  (cos^2 θ−11sin^2 θ−16sin θcos θ)X^2    −(−sin^2 θ+11cos^2 θ−16sin θcos θ)Y^(  2)   +(−24sin θcos θ+16sin^2 θ−16cos^2 θ)XY+12=0  If we desire coeff. of XY to be  zero  ⇒   −24tan θ+16tan^2 θ−16=0  ⇒  tan θ = 2, −(1/2)  let us choose tan θ=2  then  sin θ=(2/(√5))   ,  cos θ=(1/(√5))  so equation of hyperbola  becomes:     −15X^2 +5Y^(  2) +12=0  or      (X^2 /((((2(√5))/5))^2 ))−(Y^(  2) /((((2(√(15)))/5))^2 )) =1  e^2 =1+(B^2 /A^2 ) =1+(((√(15))/(√5)))^2 =4  e=2  focus at  (x_1 , y_1 )  x_1 =(6/5)+Aecos θ       =(6/5)+(((2(√5))/5))×2×(1/(√5)) = 2  y_1 =−(3/5)+Aesin θ      =−(3/5)+(((2(√5))/5))×2×(2/(√5)) = 1  hence focus at  (2, 1) .

x211y216xy12x+6y+21=0Focus=?(xa)211(yb)216(xa)(yb)+c=0x211y216xy+(2a+16b)x+(22b+16a)+(a211b216ab+c)=02a+16b=12...(i)22b+16a=6...(ii)a211b216ab+c=21...(iii)a=65,b=35,c=12so(x65)211(y+35)216(x65)(y+35)+12=0.....(a)letx65=XcosθYsinθy+35=Xsinθ+Ycosθuponsubstitutionin(a):(cos2θ11sin2θ16sinθcosθ)X2(sin2θ+11cos2θ16sinθcosθ)Y2+(24sinθcosθ+16sin2θ16cos2θ)XY+12=0Ifwedesirecoeff.ofXYtobezero24tanθ+16tan2θ16=0tanθ=2,12letuschoosetanθ=2thensinθ=25,cosθ=15soequationofhyperbolabecomes:15X2+5Y2+12=0orX2(255)2Y2(2155)2=1e2=1+B2A2=1+(155)2=4e=2focusat(x1,y1)x1=65+Aecosθ=65+(255)×2×15=2y1=35+Aesinθ=35+(255)×2×25=1hencefocusat(2,1).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com