All Questions Topic List
Coordinate Geometry Questions
Previous in All Question Next in All Question
Previous in Coordinate Geometry Next in Coordinate Geometry
Question Number 25002 by ajfour last updated on 30/Nov/17
Commented by ajfour last updated on 30/Nov/17
SolutiontoQ.24966
Answered by ajfour last updated on 30/Nov/17
x2−11y2−16xy−12x+6y+21=0Focus=?(x−a)2−11(y−b)2−16(x−a)(y−b)+c=0⇒x2−11y2−16xy+(−2a+16b)x+(22b+16a)+(a2−11b2−16ab+c)=0⇒−2a+16b=−12...(i)22b+16a=6...(ii)a2−11b2−16ab+c=21...(iii)⇒a=65,b=−35,c=12so(x−65)2−11(y+35)2−16(x−65)(y+35)+12=0.....(a)letx−65=Xcosθ−Ysinθy+35=Xsinθ+Ycosθuponsubstitutionin(a):(cos2θ−11sin2θ−16sinθcosθ)X2−(−sin2θ+11cos2θ−16sinθcosθ)Y2+(−24sinθcosθ+16sin2θ−16cos2θ)XY+12=0Ifwedesirecoeff.ofXYtobezero⇒−24tanθ+16tan2θ−16=0⇒tanθ=2,−12letuschoosetanθ=2thensinθ=25,cosθ=15soequationofhyperbolabecomes:−15X2+5Y2+12=0orX2(255)2−Y2(2155)2=1e2=1+B2A2=1+(155)2=4e=2focusat(x1,y1)x1=65+Aecosθ=65+(255)×2×15=2y1=−35+Aesinθ=−35+(255)×2×25=1hencefocusat(2,1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com