Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 25046 by Tinkutara last updated on 02/Dec/17

Show that  (a) N=((10^(143) −1)/9) is composite, and  (b) N has two factors each of which is  a series of a G.P.

$${Show}\:{that} \\ $$$$\left({a}\right)\:{N}=\frac{\mathrm{10}^{\mathrm{143}} −\mathrm{1}}{\mathrm{9}}\:{is}\:{composite},\:{and} \\ $$$$\left({b}\right)\:{N}\:{has}\:{two}\:{factors}\:{each}\:{of}\:{which}\:{is} \\ $$$${a}\:{series}\:{of}\:{a}\:{G}.{P}. \\ $$

Answered by Rasheed.Sindhi last updated on 05/Dec/17

N(10)=((10^(143) −1)/9)=((10^(143) −1)/(10−1))    In general     N(x)=((x^(143) −1)/(x−1))      =(((x−1)(x^(142) +x^(141) +x^(140) +...+x+1))/((x−1)))      =x^(142) +x^(141) +x^(140) +...+x+1  So,  N(10)=10^(142) +10^(141) +...+10+1                 [N(10)=111...11 (143 times)       143=11×13     So the number can be grouped either     11 groups of 13 ′ones′ or 13 groups of 11 ′ones′.]     =(10^(12) +10^(11) +...10+1).10^(130)                   +(10^(12) +10^(11) +...10+1).10^(117)    +(10^(12) +10^(11) +...10+1).10^(104)     +...+(10^(12) +10^(11) +...10+1).10^(13)    +(10^(12) +10^(11) +...10+1).1    =(10^(12) +10^(11) +..10+1)(10^(130) +10^(117) +...10^(13) +1)  (a)Hence the number is composite.  (b)Both factors are geometric series.  10^(12) +10^(11) +10^(10) ...+10+1:common ratio 10^(−1) .  10^(130) +10^(117) +10^(104) +...+10^(13) +1:  common ratio 10^(−13)

$${N}\left(\mathrm{10}\right)=\frac{\mathrm{10}^{\mathrm{143}} −\mathrm{1}}{\mathrm{9}}=\frac{\mathrm{10}^{\mathrm{143}} −\mathrm{1}}{\mathrm{10}−\mathrm{1}} \\ $$$$\:\:\mathrm{In}\:\mathrm{general} \\ $$$$\:\:\:{N}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{143}} −\mathrm{1}}{\mathrm{x}−\mathrm{1}} \\ $$$$\:\:\:\:=\frac{\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{142}} +\mathrm{x}^{\mathrm{141}} +\mathrm{x}^{\mathrm{140}} +...+\mathrm{x}+\mathrm{1}\right)}{\left(\mathrm{x}−\mathrm{1}\right)} \\ $$$$\:\:\:\:=\mathrm{x}^{\mathrm{142}} +\mathrm{x}^{\mathrm{141}} +\mathrm{x}^{\mathrm{140}} +...+\mathrm{x}+\mathrm{1} \\ $$$$\mathrm{So}, \\ $$$${N}\left(\mathrm{10}\right)=\mathrm{10}^{\mathrm{142}} +\mathrm{10}^{\mathrm{141}} +...+\mathrm{10}+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{N}\left(\mathrm{10}\right)=\mathrm{111}...\mathrm{11}\:\left(\mathrm{143}\:\mathrm{times}\right)\right. \\ $$$$\:\:\:\:\:\mathrm{143}=\mathrm{11}×\mathrm{13} \\ $$$$\:\:\:\mathrm{So}\:\mathrm{the}\:\mathrm{number}\:\mathrm{can}\:\mathrm{be}\:\mathrm{grouped}\:\mathrm{either} \\ $$$$\left.\:\:\:\mathrm{11}\:\mathrm{groups}\:\mathrm{of}\:\mathrm{13}\:'\mathrm{ones}'\:\mathrm{or}\:\mathrm{13}\:\mathrm{groups}\:\mathrm{of}\:\mathrm{11}\:'\mathrm{ones}'.\right] \\ $$$$\:\:\:=\left(\mathrm{10}^{\mathrm{12}} +\mathrm{10}^{\mathrm{11}} +...\mathrm{10}+\mathrm{1}\right).\mathrm{10}^{\mathrm{130}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left(\mathrm{10}^{\mathrm{12}} +\mathrm{10}^{\mathrm{11}} +...\mathrm{10}+\mathrm{1}\right).\mathrm{10}^{\mathrm{117}} \\ $$$$\:+\left(\mathrm{10}^{\mathrm{12}} +\mathrm{10}^{\mathrm{11}} +...\mathrm{10}+\mathrm{1}\right).\mathrm{10}^{\mathrm{104}} \\ $$$$\:\:+...+\left(\mathrm{10}^{\mathrm{12}} +\mathrm{10}^{\mathrm{11}} +...\mathrm{10}+\mathrm{1}\right).\mathrm{10}^{\mathrm{13}} \\ $$$$\:+\left(\mathrm{10}^{\mathrm{12}} +\mathrm{10}^{\mathrm{11}} +...\mathrm{10}+\mathrm{1}\right).\mathrm{1} \\ $$$$ \\ $$$$=\left(\mathrm{10}^{\mathrm{12}} +\mathrm{10}^{\mathrm{11}} +..\mathrm{10}+\mathrm{1}\right)\left(\mathrm{10}^{\mathrm{130}} +\mathrm{10}^{\mathrm{117}} +...\mathrm{10}^{\mathrm{13}} +\mathrm{1}\right) \\ $$$$\left(\mathrm{a}\right)\mathrm{Hence}\:\mathrm{the}\:\mathrm{number}\:\mathrm{is}\:\mathrm{composite}. \\ $$$$\left(\mathrm{b}\right)\mathrm{Both}\:\mathrm{factors}\:\mathrm{are}\:\mathrm{geometric}\:\mathrm{series}. \\ $$$$\mathrm{10}^{\mathrm{12}} +\mathrm{10}^{\mathrm{11}} +\mathrm{10}^{\mathrm{10}} ...+\mathrm{10}+\mathrm{1}:\mathrm{common}\:\mathrm{ratio}\:\mathrm{10}^{−\mathrm{1}} . \\ $$$$\mathrm{10}^{\mathrm{130}} +\mathrm{10}^{\mathrm{117}} +\mathrm{10}^{\mathrm{104}} +...+\mathrm{10}^{\mathrm{13}} +\mathrm{1}:\:\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{10}^{−\mathrm{13}} \\ $$

Commented by Tinkutara last updated on 05/Dec/17

Thank you Sir!  There is one more answer:  N=(1+10^(11) +10^(22) +...+10^(132) )(1+10+  10^2 +...+10^(10) )

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$$${There}\:{is}\:{one}\:{more}\:{answer}: \\ $$$${N}=\left(\mathrm{1}+\mathrm{10}^{\mathrm{11}} +\mathrm{10}^{\mathrm{22}} +...+\mathrm{10}^{\mathrm{132}} \right)\left(\mathrm{1}+\mathrm{10}+\right. \\ $$$$\left.\mathrm{10}^{\mathrm{2}} +...+\mathrm{10}^{\mathrm{10}} \right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com