Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 25049 by Tinkutara last updated on 02/Dec/17

If I = Σ_(k=1) ^(98) ∫_k ^(k+1) ((k + 1)/(x(x + 1)))dx, then  (1) I > ((49)/(50))  (2) I < ((49)/(50))  (3) I < log_e 99  (4) I > log_e 99

$$\mathrm{If}\:{I}\:=\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{98}} {\sum}}\underset{{k}} {\overset{{k}+\mathrm{1}} {\int}}\frac{{k}\:+\:\mathrm{1}}{{x}\left({x}\:+\:\mathrm{1}\right)}{dx},\:\mathrm{then} \\ $$ $$\left(\mathrm{1}\right)\:{I}\:>\:\frac{\mathrm{49}}{\mathrm{50}} \\ $$ $$\left(\mathrm{2}\right)\:{I}\:<\:\frac{\mathrm{49}}{\mathrm{50}} \\ $$ $$\left(\mathrm{3}\right)\:{I}\:<\:\mathrm{log}_{{e}} \mathrm{99} \\ $$ $$\left(\mathrm{4}\right)\:{I}\:>\:\mathrm{log}_{{e}} \mathrm{99} \\ $$

Commented byajfour last updated on 02/Dec/17

(1), (3) .

$$\left(\mathrm{1}\right),\:\left(\mathrm{3}\right)\:. \\ $$

Answered by ajfour last updated on 08/Dec/17

Let    J_k =∫_k ^(  k+1 ) ((k+1)/(x(x+1)))dx  J_k =(k+1)∫_k ^(  k+1 ) ((1/x)−(1/(x+1)))dx         =(k+1)ln ((x/(x+1)))∣_k ^(k+1)        =(k+1)ln [(((k+1)^2 )/(k(k+2)))]   =2(k+1)[ln (k+1)−ln k−ln (k+2)]  =[2(k+1)ln (k+1)−kln k     −(k+2)ln (k+2)]+[−ln k+ln (k+2)]  I=Σ_(k=1) ^(98) J_k =2Σ_(k=2) ^(99) kln k−Σ_(k=1) ^(98) kln k           −Σ_(k=3) ^(100) kln k−Σ_(k=1) ^(98) ln k+Σ_(k=3) ^(100) ln k  terms from k=3 to k=98  entirely cancel out, so    I=4ln 2+2×99ln 99−2ln 2    −99ln 99−100ln 100−ln 2      +ln 99+ln 100    I =ln 2+99ln (((99)/(100)))+ln 99       = ln 99+99ln (1−(1/(100)))+ln 2          ≈ ln 99−0.99+0.3   So          ((49)/(50)) < I < log _e 99 .

$${Let}\:\:\:\:{J}_{{k}} =\int_{{k}} ^{\:\:{k}+\mathrm{1}\:} \frac{{k}+\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)}{dx} \\ $$ $${J}_{{k}} =\left({k}+\mathrm{1}\right)\int_{{k}} ^{\:\:{k}+\mathrm{1}\:} \left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right){dx} \\ $$ $$ \\ $$ $$\:\:\:\:\:=\left({k}+\mathrm{1}\right)\mathrm{ln}\:\left(\frac{{x}}{{x}+\mathrm{1}}\right)\mid_{{k}} ^{{k}+\mathrm{1}} \\ $$ $$\:\:\:\:\:=\left({k}+\mathrm{1}\right)\mathrm{ln}\:\left[\frac{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }{{k}\left({k}+\mathrm{2}\right)}\right] \\ $$ $$\:=\mathrm{2}\left({k}+\mathrm{1}\right)\left[\mathrm{ln}\:\left({k}+\mathrm{1}\right)−\mathrm{ln}\:{k}−\mathrm{ln}\:\left({k}+\mathrm{2}\right)\right] \\ $$ $$=\left[\mathrm{2}\left({k}+\mathrm{1}\right)\mathrm{ln}\:\left({k}+\mathrm{1}\right)−{k}\mathrm{ln}\:{k}\right. \\ $$ $$\left.\:\:\:−\left({k}+\mathrm{2}\right)\mathrm{ln}\:\left({k}+\mathrm{2}\right)\right]+\left[−\mathrm{ln}\:{k}+\mathrm{ln}\:\left({k}+\mathrm{2}\right)\right] \\ $$ $${I}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{98}} {\sum}}{J}_{{k}} =\mathrm{2}\underset{{k}=\mathrm{2}} {\overset{\mathrm{99}} {\sum}}{k}\mathrm{ln}\:{k}−\underset{{k}=\mathrm{1}} {\overset{\mathrm{98}} {\sum}}{k}\mathrm{ln}\:{k} \\ $$ $$\:\:\:\:\:\:\:\:\:−\underset{{k}=\mathrm{3}} {\overset{\mathrm{100}} {\sum}}{k}\mathrm{ln}\:{k}−\underset{{k}=\mathrm{1}} {\overset{\mathrm{98}} {\sum}}\mathrm{ln}\:{k}+\underset{{k}=\mathrm{3}} {\overset{\mathrm{100}} {\sum}}\mathrm{ln}\:{k} \\ $$ $${terms}\:{from}\:{k}=\mathrm{3}\:{to}\:{k}=\mathrm{98} \\ $$ $${entirely}\:{cancel}\:{out},\:{so} \\ $$ $$\:\:{I}=\mathrm{4ln}\:\mathrm{2}+\mathrm{2}×\mathrm{99ln}\:\mathrm{99}−\mathrm{2ln}\:\mathrm{2} \\ $$ $$\:\:−\mathrm{99ln}\:\mathrm{99}−\mathrm{100ln}\:\mathrm{100}−\mathrm{ln}\:\mathrm{2} \\ $$ $$\:\:\:\:+\mathrm{ln}\:\mathrm{99}+\mathrm{ln}\:\mathrm{100} \\ $$ $$\:\:{I}\:=\mathrm{ln}\:\mathrm{2}+\mathrm{99ln}\:\left(\frac{\mathrm{99}}{\mathrm{100}}\right)+\mathrm{ln}\:\mathrm{99} \\ $$ $$\:\:\:\:\:=\:\mathrm{ln}\:\mathrm{99}+\mathrm{99ln}\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{100}}\right)+\mathrm{ln}\:\mathrm{2} \\ $$ $$\:\:\:\:\:\:\:\:\approx\:\mathrm{ln}\:\mathrm{99}−\mathrm{0}.\mathrm{99}+\mathrm{0}.\mathrm{3}\: \\ $$ $${So}\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{49}}{\mathrm{50}}\:<\:{I}\:<\:\mathrm{log}\:_{{e}} \mathrm{99}\:. \\ $$

Commented byTinkutara last updated on 03/Dec/17

I appreciate this Sir.

$${I}\:{appreciate}\:{this}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com