Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 25091 by Tinkutara last updated on 03/Dec/17

A particle of mass m moving with  speed u collides perfectly inelastically  with a sphere of radius R and same  mass, at rest, at an impact parameter  d. Find  (a) Angle between their final velocities  (b) Magnitude of their final  velocities

$${A}\:{particle}\:{of}\:{mass}\:{m}\:{moving}\:{with} \\ $$$${speed}\:{u}\:{collides}\:{perfectly}\:{inelastically} \\ $$$${with}\:{a}\:{sphere}\:{of}\:{radius}\:{R}\:{and}\:{same} \\ $$$${mass},\:{at}\:{rest},\:{at}\:{an}\:{impact}\:{parameter} \\ $$$${d}.\:{Find} \\ $$$$\left({a}\right)\:{Angle}\:{between}\:{their}\:{final}\:{velocities} \\ $$$$\left({b}\right)\:{Magnitude}\:{of}\:{their}\:{final} \\ $$$${velocities} \\ $$

Answered by ajfour last updated on 03/Dec/17

Commented by ajfour last updated on 04/Dec/17

conserving linear momentum  mu=2mv+mωRsin θ  and sin θ=d/R  , so    2v+ωd=u   ...(i)  conserving angular momentum  about ground point G:  mu(R+d)=mvR+(2/5)mR^2 ω+     m(v+ωRsin θ)(R+d)+mω(Rcos θ)^2                                                   ....(ii)  and  as  (Rcos θ)^2 =(R+d)(R−d),  also Rsin θ=d  ⇒  u(R+d)=vR+(2/5)ωR^2 +               (v+ωd)(R+d)+ω(R^2 −d^2 )  from (i):    v+ωd=u−v  , so     vd=ω((7/5)R^2 −d^2 )  and from (i):      2v+𝛚d=u  ⇒   2ω((7/5)R^2 −d^2 )+ωd^2 =ud    ω=((ud)/((((14)/5)R^2 +d^2 ))) ; v=((u((7/5)R^2 −d^2 ))/((((14)/5)R^2 +d^2 )))  tan φ=((ωRcos θ)/(v+ωd)) =(d(√(R^2 −d^2 ))/((vd/ω)+d^2 ))          tan 𝛗=((5d(√(R^2 −d^2 )))/(7R^2 )) .  V=((ωRcos θ)/(sin φ)) =ω[((√(R^2 −d^2 ))/(sin φ))] .

$${conserving}\:{linear}\:{momentum} \\ $$$${mu}=\mathrm{2}{mv}+{m}\omega{R}\mathrm{sin}\:\theta \\ $$$${and}\:\mathrm{sin}\:\theta={d}/{R}\:\:,\:{so} \\ $$$$\:\:\mathrm{2}{v}+\omega{d}={u}\:\:\:...\left({i}\right) \\ $$$${conserving}\:{angular}\:{momentum} \\ $$$${about}\:{ground}\:{point}\:{G}: \\ $$$${mu}\left({R}+{d}\right)={mvR}+\frac{\mathrm{2}}{\mathrm{5}}{mR}^{\mathrm{2}} \omega+ \\ $$$$\:\:\:{m}\left({v}+\omega{R}\mathrm{sin}\:\theta\right)\left({R}+{d}\right)+{m}\omega\left({R}\mathrm{cos}\:\theta\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$${and}\:\:{as}\:\:\left({R}\mathrm{cos}\:\theta\right)^{\mathrm{2}} =\left({R}+{d}\right)\left({R}−{d}\right), \\ $$$${also}\:{R}\mathrm{sin}\:\theta={d} \\ $$$$\Rightarrow\:\:{u}\left({R}+{d}\right)={vR}+\frac{\mathrm{2}}{\mathrm{5}}\omega{R}^{\mathrm{2}} + \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left({v}+\omega{d}\right)\left({R}+{d}\right)+\omega\left({R}^{\mathrm{2}} −{d}^{\mathrm{2}} \right) \\ $$$${from}\:\left({i}\right):\:\:\:\:{v}+\omega{d}={u}−{v}\:\:,\:{so} \\ $$$$\:\:\:{vd}=\omega\left(\frac{\mathrm{7}}{\mathrm{5}}{R}^{\mathrm{2}} −{d}^{\mathrm{2}} \right) \\ $$$${and}\:{from}\:\left({i}\right):\:\:\:\:\:\:\mathrm{2}\boldsymbol{{v}}+\boldsymbol{\omega{d}}=\boldsymbol{{u}} \\ $$$$\Rightarrow\:\:\:\mathrm{2}\omega\left(\frac{\mathrm{7}}{\mathrm{5}}{R}^{\mathrm{2}} −{d}^{\mathrm{2}} \right)+\omega{d}^{\mathrm{2}} ={ud} \\ $$$$\:\:\omega=\frac{{ud}}{\left(\frac{\mathrm{14}}{\mathrm{5}}{R}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)}\:;\:\boldsymbol{{v}}=\frac{\boldsymbol{{u}}\left(\frac{\mathrm{7}}{\mathrm{5}}\boldsymbol{{R}}^{\mathrm{2}} −{d}^{\mathrm{2}} \right)}{\left(\frac{\mathrm{14}}{\mathrm{5}}{R}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)} \\ $$$$\mathrm{tan}\:\phi=\frac{\omega{R}\mathrm{cos}\:\theta}{{v}+\omega{d}}\:=\frac{{d}\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}} }}{\left({vd}/\omega\right)+{d}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\mathrm{tan}\:\boldsymbol{\phi}=\frac{\mathrm{5}\boldsymbol{{d}}\sqrt{\boldsymbol{{R}}^{\mathrm{2}} −\boldsymbol{{d}}^{\mathrm{2}} }}{\mathrm{7}\boldsymbol{{R}}^{\mathrm{2}} }\:. \\ $$$${V}=\frac{\omega{R}\mathrm{cos}\:\theta}{\mathrm{sin}\:\phi}\:=\omega\left[\frac{\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}} }}{\mathrm{sin}\:\phi}\right]\:. \\ $$

Commented by ajfour last updated on 03/Dec/17

∠ between their final velocities  is  𝛗 .  final velocity of sphere v.  Final velocity of particle is V.

$$\angle\:{between}\:{their}\:{final}\:{velocities} \\ $$$${is}\:\:\boldsymbol{\phi}\:. \\ $$$${final}\:{velocity}\:{of}\:{sphere}\:\boldsymbol{{v}}. \\ $$$${Final}\:{velocity}\:{of}\:{particle}\:{is}\:\boldsymbol{{V}}. \\ $$

Commented by Tinkutara last updated on 05/Dec/17

Answer is:  v_1 =((ud)/R),v_2 =−v_3 =((u(√(R^2 −d^2 )))/(2R))

$${Answer}\:{is}: \\ $$$${v}_{\mathrm{1}} =\frac{{ud}}{{R}},{v}_{\mathrm{2}} =−{v}_{\mathrm{3}} =\frac{{u}\sqrt{{R}^{\mathrm{2}} −{d}^{\mathrm{2}} }}{\mathrm{2}{R}} \\ $$

Commented by ajfour last updated on 05/Dec/17

which answer is correct for  d=0 , and even d=R ? Please  check or i think i have   misunderstood the question.  mrW sir can help if he finds  time and notices my request.

$${which}\:{answer}\:{is}\:{correct}\:{for} \\ $$$${d}=\mathrm{0}\:,\:{and}\:{even}\:{d}={R}\:?\:{Please} \\ $$$${check}\:{or}\:{i}\:{think}\:{i}\:{have}\: \\ $$$${misunderstood}\:{the}\:{question}. \\ $$$${mrW}\:{sir}\:{can}\:{help}\:{if}\:{he}\:{finds} \\ $$$${time}\:{and}\:{notices}\:{my}\:{request}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com