Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 25290 by rather ishfaq last updated on 07/Dec/17

∫((x dx)/(√(a^4 +x^4 )))

xdxa4+x4

Answered by prakash jain last updated on 07/Dec/17

x^2 =a^2 sinh u  2xdx=a^2 cosh udu  ∫((a^2 cosh u du)/(2a^2 cosh u))  =(1/2)u+C  =(1/2)sinh^(−1) (x^2 /a^2 )+C

x2=a2sinhu2xdx=a2coshudua2coshudu2a2coshu=12u+C=12sinh1x2a2+C

Answered by ajfour last updated on 07/Dec/17

let   x^2 =a^2 tan θ  ⇒ 2xdx=a^2 sec^2 θdθ  ∫((xdx)/(√(a^4 +x^4 )))  =(a^2 /2)∫((sec^2 θdθ)/(a^2 sec θ))                   =(1/2)ln ∣sec θ+tan θ∣+c_1            =(1/2)ln ∣(((√(x^2 +a^2 ))+x^2 )/a^2 )∣+c_1           =(1/2)ln (x^2 +(√(x^2 +a^2 )) )+c .

letx2=a2tanθ2xdx=a2sec2θdθxdxa4+x4=a22sec2θdθa2secθ=12lnsecθ+tanθ+c1=12lnx2+a2+x2a2+c1=12ln(x2+x2+a2)+c.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com