Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 25381 by Tinkutara last updated on 09/Dec/17

The first term of a sequence is 1, the  second is 2 and every term is the sum of  the two preceding terms. The n^(th)  term  is.

$$\mathrm{The}\:\mathrm{first}\:\mathrm{term}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{1},\:\mathrm{the} \\ $$$$\mathrm{second}\:\mathrm{is}\:\mathrm{2}\:\mathrm{and}\:\mathrm{every}\:\mathrm{term}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{preceding}\:\mathrm{terms}.\:\mathrm{The}\:{n}^{\mathrm{th}} \:\mathrm{term} \\ $$$$\mathrm{is}. \\ $$

Answered by prakash jain last updated on 09/Dec/17

a_n =a_(n−1) +a_(n−2)   characteristic equation  x^2 −x−1=0  λ_1 =((1+(√5))/2), λ_2 =((1−(√5))/2)  a_n =c_1 (((1+(√5))/2))^n +c_2 (((1−(√5))/2))^n   n=0,a_0 =1  c_1 +c_2 =1   (i)  n=1,a_1 =2  c_1 ((1+(√5))/2)+c_2 ((1−(√5))/2)=2  (√5)c_1 =2−((1−(√5))/2)⇒c_1 =((3+(√5))/(2(√5)))  c_2 =1−c_1 =(((√5)−3)/(2(√5)))  a_n =(((3+(√5))/(2(√5))))(((1+(√5))/2))^n +((((√5)−3)/(2(√5))))(((1−(√5))/2))^n

$${a}_{{n}} ={a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} \\ $$$${characteristic}\:{equation} \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\lambda_{\mathrm{1}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}},\:\lambda_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${a}_{{n}} ={c}_{\mathrm{1}} \left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} +{c}_{\mathrm{2}} \left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \\ $$$${n}=\mathrm{0},{a}_{\mathrm{0}} =\mathrm{1} \\ $$$${c}_{\mathrm{1}} +{c}_{\mathrm{2}} =\mathrm{1}\:\:\:\left({i}\right) \\ $$$${n}=\mathrm{1},{a}_{\mathrm{1}} =\mathrm{2} \\ $$$${c}_{\mathrm{1}} \frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}+{c}_{\mathrm{2}} \frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}=\mathrm{2} \\ $$$$\sqrt{\mathrm{5}}{c}_{\mathrm{1}} =\mathrm{2}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\Rightarrow{c}_{\mathrm{1}} =\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$${c}_{\mathrm{2}} =\mathrm{1}−{c}_{\mathrm{1}} =\frac{\sqrt{\mathrm{5}}−\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$${a}_{{n}} =\left(\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}\sqrt{\mathrm{5}}}\right)\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} +\left(\frac{\sqrt{\mathrm{5}}−\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{5}}}\right)\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \\ $$

Commented by Tinkutara last updated on 09/Dec/17

What is characteristic equation? And  why a_n =c_1 λ_1 ^n +c_2 λ_2 ^n ?

$${What}\:{is}\:{characteristic}\:{equation}?\:{And} \\ $$$${why}\:{a}_{{n}} ={c}_{\mathrm{1}} \lambda_{\mathrm{1}} ^{{n}} +{c}_{\mathrm{2}} \lambda_{\mathrm{2}} ^{{n}} ? \\ $$

Commented by prakash jain last updated on 09/Dec/17

x^2 −x−1=0  λ_1 ^2 −λ_1 −1=0  λ_2 ^2 −λ_2 −1=0  c_1 λ_1 ^(n−2) (λ_1 ^2 −λ_1 −1)+c_2 λ_2 ^(n−2) (λ_2 ^2 −λ_2 −1)=0  ⇒(c_1 λ_1 ^n +c_2 λ_2 ^n )=(c_1 λ_1 ^(n−1) +c_2 λ_2 ^(n−1) )+(c_1 λ_1 ^(n−2) +c_2 λ_2 ^(n−2) )  ⇒a_n =a_(n−1) +a_(n−2)   The general solution of the equation  is a_n =c_1 λ_1 ^n +c_2 λ_2 ^n   This is the general solution when  λ_1 ≠λ_2   when λ_1 =λ_2 =λ  a_n =(c_1 +c_2 n)λ^n   To know more  read linear difference equation

$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\lambda_{\mathrm{1}} ^{\mathrm{2}} −\lambda_{\mathrm{1}} −\mathrm{1}=\mathrm{0} \\ $$$$\lambda_{\mathrm{2}} ^{\mathrm{2}} −\lambda_{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$${c}_{\mathrm{1}} \lambda_{\mathrm{1}} ^{{n}−\mathrm{2}} \left(\lambda_{\mathrm{1}} ^{\mathrm{2}} −\lambda_{\mathrm{1}} −\mathrm{1}\right)+{c}_{\mathrm{2}} \lambda_{\mathrm{2}} ^{{n}−\mathrm{2}} \left(\lambda_{\mathrm{2}} ^{\mathrm{2}} −\lambda_{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\left({c}_{\mathrm{1}} \lambda_{\mathrm{1}} ^{{n}} +{c}_{\mathrm{2}} \lambda_{\mathrm{2}} ^{{n}} \right)=\left({c}_{\mathrm{1}} \lambda_{\mathrm{1}} ^{{n}−\mathrm{1}} +{c}_{\mathrm{2}} \lambda_{\mathrm{2}} ^{{n}−\mathrm{1}} \right)+\left({c}_{\mathrm{1}} \lambda_{\mathrm{1}} ^{{n}−\mathrm{2}} +{c}_{\mathrm{2}} \lambda_{\mathrm{2}} ^{{n}−\mathrm{2}} \right) \\ $$$$\Rightarrow{a}_{{n}} ={a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} \\ $$$$\mathrm{The}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{is}\:{a}_{{n}} ={c}_{\mathrm{1}} \lambda_{\mathrm{1}} ^{{n}} +{c}_{\mathrm{2}} \lambda_{\mathrm{2}} ^{{n}} \\ $$$$\mathrm{This}\:\mathrm{is}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{when} \\ $$$$\lambda_{\mathrm{1}} \neq\lambda_{\mathrm{2}} \\ $$$$\mathrm{when}\:\lambda_{\mathrm{1}} =\lambda_{\mathrm{2}} =\lambda \\ $$$${a}_{{n}} =\left({c}_{\mathrm{1}} +{c}_{\mathrm{2}} {n}\right)\lambda^{{n}} \\ $$$$\mathrm{To}\:\mathrm{know}\:\mathrm{more} \\ $$$$\mathrm{read}\:\mathrm{linear}\:\mathrm{difference}\:\mathrm{equation} \\ $$

Commented by prakash jain last updated on 09/Dec/17

Characteristic equation is what  you get after replacing a_n  by x^n .

$$\mathrm{Characteristic}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{what} \\ $$$$\mathrm{you}\:\mathrm{get}\:\mathrm{after}\:\mathrm{replacing}\:{a}_{{n}} \:\mathrm{by}\:{x}^{{n}} . \\ $$

Commented by Tinkutara last updated on 10/Dec/17

Can we apply these methods anywhere?  For example, in AGP?

$${Can}\:{we}\:{apply}\:{these}\:{methods}\:{anywhere}? \\ $$$${For}\:{example},\:{in}\:{AGP}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com