Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 2546 by Rasheed Soomro last updated on 22/Nov/15

If A and B are two matrices of suitable order  does there exist definition for A^B  ?

$$\boldsymbol{\mathrm{If}}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{two}\:\mathrm{matrices}\:\mathrm{of}\:\mathrm{suitable}\:\mathrm{order} \\ $$$$\mathrm{does}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{definition}\:\mathrm{for}\:\mathrm{A}^{\mathrm{B}} \:? \\ $$

Commented by Yozzi last updated on 22/Nov/15

A^B =e^((lnA)B)   if A and B are sqaure  and non−singular.  e^((lnA)B) =1+(lnA)B+((((lnA)B)^2 )/(2!))+((((lnA)B)^3 )/(3!))+...  ∴ A^B =Σ_(r=0) ^∞ (1/(r!))[(lnA)B]^(r )     (Matrix exponential)

$${A}^{{B}} ={e}^{\left({lnA}\right){B}} \:\:{if}\:{A}\:{and}\:{B}\:{are}\:{sqaure} \\ $$$${and}\:{non}−{singular}. \\ $$$${e}^{\left({lnA}\right){B}} =\mathrm{1}+\left({lnA}\right){B}+\frac{\left(\left({lnA}\right){B}\right)^{\mathrm{2}} }{\mathrm{2}!}+\frac{\left(\left({lnA}\right){B}\right)^{\mathrm{3}} }{\mathrm{3}!}+... \\ $$$$\therefore\:{A}^{{B}} =\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{r}!}\left[\left({lnA}\right){B}\right]^{{r}\:} \:\:\:\:\left({Matrix}\:{exponential}\right) \\ $$

Commented by Rasheed Soomro last updated on 22/Nov/15

THanKS for Sharing Knowledge.One thing more  I would like to ask how lnA is defined?_(−)   Do A and B need to be of same order?

$$\mathcal{TH}{an}\mathfrak{K}\mathcal{S}\:{for}\:\mathcal{S}{haring}\:\mathcal{K}{nowledge}.{One}\:{thing}\:{more} \\ $$$$\mathcal{I}\:{would}\:{like}\:{to}\:{ask}\:\underset{−} {{how}\:{lnA}\:{is}\:{defined}?} \\ $$$$\mathcal{D}{o}\:{A}\:{and}\:{B}\:{need}\:{to}\:{be}\:{of}\:{same}\:{order}? \\ $$

Commented by Yozzi last updated on 22/Nov/15

If A can be diagonalised,  to find lnA, find the eigenvector   matrix V of the matrix A. With  A^′  as a diaginal matrix of the  eigenvalues of A for its corresponding  V write A^′ =V^(−1) AV    (∗)where V^(−1)  is the  inverse matrix of V.    Suppose A^′ = [((a   0)),((0   b)) ](for example).  Then lnA^′ = [((lna   0)),((0    lnb)) ].   Taking ln on both sides of (∗)  lnA^′ =V^(−1) (lnA)V⇒lnA=V(lnA^′ )V^(−1) .

$${If}\:{A}\:{can}\:{be}\:{diagonalised}, \\ $$$${to}\:{find}\:{lnA},\:{find}\:{the}\:{eigenvector}\: \\ $$$${matrix}\:{V}\:{of}\:{the}\:{matrix}\:{A}.\:{With} \\ $$$${A}^{'} \:{as}\:{a}\:{diaginal}\:{matrix}\:{of}\:{the} \\ $$$${eigenvalues}\:{of}\:{A}\:{for}\:{its}\:{corresponding} \\ $$$${V}\:{write}\:{A}^{'} ={V}^{−\mathrm{1}} {AV}\:\:\:\:\left(\ast\right){where}\:{V}^{−\mathrm{1}} \:{is}\:{the} \\ $$$${inverse}\:{matrix}\:{of}\:{V}.\:\: \\ $$$${Suppose}\:{A}^{'} =\begin{bmatrix}{{a}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:{b}}\end{bmatrix}\left({for}\:{example}\right). \\ $$$${Then}\:{lnA}^{'} =\begin{bmatrix}{{lna}\:\:\:\mathrm{0}}\\{\mathrm{0}\:\:\:\:{lnb}}\end{bmatrix}.\: \\ $$$${Taking}\:{ln}\:{on}\:{both}\:{sides}\:{of}\:\left(\ast\right) \\ $$$${lnA}^{'} ={V}^{−\mathrm{1}} \left({lnA}\right){V}\Rightarrow{lnA}={V}\left({lnA}^{'} \right){V}^{−\mathrm{1}} . \\ $$

Commented by Rasheed Soomro last updated on 22/Nov/15

THANK^(Ssss  )  !

$$\boldsymbol{\mathcal{THANK}}^{\mathcal{S}{sss}\:\:} \:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com