Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 25462 by Tinkutara last updated on 10/Dec/17

Let S_n , n = 1, 2, 3... be the sum of  infinite geometric series whose first  term is n and the common ratio is  (1/(n + 1)). Then  lim_(n→∞) ((S_1 S_n  + S_2 S_(n−1)  + S_3 S_(n−2)  ... + S_n S_1 )/(S_1 ^2  + S_2 ^2  + ... + S_n ^2 ))  is

$$\mathrm{Let}\:{S}_{{n}} ,\:{n}\:=\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}...\:\mathrm{be}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{infinite}\:\mathrm{geometric}\:\mathrm{series}\:\mathrm{whose}\:\mathrm{first} \\ $$$$\mathrm{term}\:\mathrm{is}\:{n}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{is} \\ $$$$\frac{\mathrm{1}}{{n}\:+\:\mathrm{1}}.\:\mathrm{Then} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{S}_{\mathrm{1}} {S}_{{n}} \:+\:{S}_{\mathrm{2}} {S}_{{n}−\mathrm{1}} \:+\:{S}_{\mathrm{3}} {S}_{{n}−\mathrm{2}} \:...\:+\:{S}_{{n}} {S}_{\mathrm{1}} }{{S}_{\mathrm{1}} ^{\mathrm{2}} \:+\:{S}_{\mathrm{2}} ^{\mathrm{2}} \:+\:...\:+\:{S}_{{n}} ^{\mathrm{2}} } \\ $$$$\mathrm{is} \\ $$

Answered by ajfour last updated on 11/Dec/17

S_m =(m/(1−(1/(m+1))))=m+1  Σ_(m=1) ^n S_m ^2 =Σ_(m=1) ^n (m+1)^2         =(((n+1)(n+2)(2n+3))/6)−1   ..(i)  S_m S_(n−m+1) =(m+1)(n−m+2)  Σ_(m=1) S_m S_(n−m+1) =(n+2)Σ_(m=1) ^n (m+1)                                       −Σ_(m=1) ^n m(m+1)  Σ_(m=1) ^n S_m S_(n−m+1) =(n+2)[((n(n+1))/2)+n]                              −((n(n+1)(n+2))/3)     =((n(n+1)(n+2))/6)+n(n+2)   ...(ii)  using (i) and (ii):  lim_(n→∞) ((Σ_(m=1) ^n S_m S_(n−m+) )/(Σ_(m=1) ^n S_m ^2 )) =       lim_(n→∞) (([((n(n+1)(n+2))/6)+n(n+2)])/([((n(n+2)(2n+3))/6)−1]))    =((coeff. of n^3  in N^r )/(coeff. of n^3  in D^r )) = ((1/6)/(1/3)) =(1/2) .

$${S}_{{m}} =\frac{{m}}{\mathrm{1}−\frac{\mathrm{1}}{{m}+\mathrm{1}}}={m}+\mathrm{1} \\ $$$$\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{S}_{{m}} ^{\mathrm{2}} =\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}\left({m}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)}{\mathrm{6}}−\mathrm{1}\:\:\:..\left({i}\right) \\ $$$${S}_{{m}} {S}_{{n}−{m}+\mathrm{1}} =\left({m}+\mathrm{1}\right)\left({n}−{m}+\mathrm{2}\right) \\ $$$$\underset{{m}=\mathrm{1}} {\sum}{S}_{{m}} {S}_{{n}−{m}+\mathrm{1}} =\left({n}+\mathrm{2}\right)\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}\left({m}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{m}\left({m}+\mathrm{1}\right) \\ $$$$\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{S}_{{m}} {S}_{{n}−{m}+\mathrm{1}} =\left({n}+\mathrm{2}\right)\left[\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+{n}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{3}} \\ $$$$\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{6}}+{n}\left({n}+\mathrm{2}\right)\:\:\:...\left({ii}\right) \\ $$$${using}\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{S}_{{m}} {S}_{{n}−{m}+} }{\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{S}_{{m}} ^{\mathrm{2}} }\:= \\ $$$$\:\:\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\left[\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{6}}+{n}\left({n}+\mathrm{2}\right)\right]}{\left[\frac{{n}\left({n}+\mathrm{2}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)}{\mathrm{6}}−\mathrm{1}\right]} \\ $$$$\:\:=\frac{{coeff}.\:{of}\:{n}^{\mathrm{3}} \:{in}\:{N}^{{r}} }{{coeff}.\:{of}\:{n}^{\mathrm{3}} \:{in}\:{D}^{{r}} }\:=\:\frac{\mathrm{1}/\mathrm{6}}{\mathrm{1}/\mathrm{3}}\:=\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$

Commented by Tinkutara last updated on 11/Dec/17

Thank you Sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com