Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2548 by Filup last updated on 22/Nov/15

For a function y=f(x),  inflection points/stationary points are  when  (df/dx)=0.    For a function z=f(x, y), can you find  these points through a similar method?    Is it something like (∂f/∂x)=0 and (∂f/∂y)=0?

$$\mathrm{For}\:\mathrm{a}\:\mathrm{function}\:{y}={f}\left({x}\right), \\ $$$$\mathrm{inflection}\:\mathrm{points}/\mathrm{stationary}\:\mathrm{points}\:\mathrm{are} \\ $$$$\mathrm{when}\:\:\frac{{df}}{{dx}}=\mathrm{0}. \\ $$$$ \\ $$$$\mathrm{For}\:\mathrm{a}\:\mathrm{function}\:{z}={f}\left({x},\:{y}\right),\:\mathrm{can}\:\mathrm{you}\:\mathrm{find} \\ $$$$\mathrm{these}\:\mathrm{points}\:\mathrm{through}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{method}? \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{it}\:\mathrm{something}\:\mathrm{like}\:\frac{\partial{f}}{\partial{x}}=\mathrm{0}\:\mathrm{and}\:\frac{\partial{f}}{\partial{y}}=\mathrm{0}? \\ $$

Answered by Yozzi last updated on 22/Nov/15

Let f be a function of two variables  whose first and second partial   derivatives are continous on some open  disc B. Suppose further that at the point  (a,b)  f_x =(∂f/∂x)=0   and   f_y =(∂f/∂y)=0.   Let p=(∂^2 f/∂x^2 )=f_(xx)  , q=(∂^2 f/∂y^2 )=f_(yy)  and r=(∂^2 f/(∂y∂x))=f_(xy)   (a,b) is a local minimum if pq−r^2 >0  and p>0 (or q>0),  (a,b) is a local maximum if pq−r^2 >0   and p<0  (or  q<0)  (a,b) is a saddle point if pq−r^2 <0  pq−r^2 =0 is inconclusive.

$${Let}\:{f}\:{be}\:{a}\:{function}\:{of}\:{two}\:{variables} \\ $$$${whose}\:{first}\:{and}\:{second}\:{partial}\: \\ $$$${derivatives}\:{are}\:{continous}\:{on}\:{some}\:{open} \\ $$$${disc}\:{B}.\:{Suppose}\:{further}\:{that}\:{at}\:{the}\:{point} \\ $$$$\left({a},{b}\right) \\ $$$${f}_{{x}} =\frac{\partial{f}}{\partial{x}}=\mathrm{0}\:\:\:{and}\:\:\:{f}_{{y}} =\frac{\partial{f}}{\partial{y}}=\mathrm{0}.\: \\ $$$${Let}\:{p}=\frac{\partial^{\mathrm{2}} {f}}{\partial{x}^{\mathrm{2}} }={f}_{{xx}} \:,\:{q}=\frac{\partial^{\mathrm{2}} {f}}{\partial{y}^{\mathrm{2}} }={f}_{{yy}} \:{and}\:{r}=\frac{\partial^{\mathrm{2}} {f}}{\partial{y}\partial{x}}={f}_{{xy}} \\ $$$$\left({a},{b}\right)\:{is}\:{a}\:{local}\:{minimum}\:{if}\:{pq}−{r}^{\mathrm{2}} >\mathrm{0}\:\:{and}\:{p}>\mathrm{0}\:\left({or}\:{q}>\mathrm{0}\right), \\ $$$$\left({a},{b}\right)\:{is}\:{a}\:{local}\:{maximum}\:{if}\:{pq}−{r}^{\mathrm{2}} >\mathrm{0}\:\:\:{and}\:{p}<\mathrm{0}\:\:\left({or}\:\:{q}<\mathrm{0}\right) \\ $$$$\left({a},{b}\right)\:{is}\:{a}\:{saddle}\:{point}\:{if}\:{pq}−{r}^{\mathrm{2}} <\mathrm{0} \\ $$$${pq}−{r}^{\mathrm{2}} =\mathrm{0}\:{is}\:{inconclusive}. \\ $$

Commented by Filup last updated on 22/Nov/15

My question is  what is an open disc and what is f_(xy) ?  is  (∂^2 f/(∂x∂y))  differentiation with two variables?

$$\mathrm{My}\:\mathrm{question}\:\mathrm{is} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{an}\:\mathrm{open}\:\mathrm{disc}\:\mathrm{and}\:\mathrm{what}\:\mathrm{is}\:{f}_{{xy}} ? \\ $$$$\mathrm{is}\:\:\frac{\partial^{\mathrm{2}} {f}}{\partial{x}\partial{y}}\:\:\mathrm{differentiation}\:\mathrm{with}\:\mathrm{two}\:\mathrm{variables}? \\ $$

Commented by Yozzi last updated on 22/Nov/15

f_x  is partial differentiation of f w.r.t  x  f_(xy) =(∂/∂y)(f_x )=(∂/∂y)((∂f/∂x))=(∂^2 f/(∂y∂x)) (mixed 2nd partial derivative)  An n−dimensional open disc of  radius r is the collection of points less  than a distance of r away from a fixed  point in Euclidean n− space. (Wolfram Alpha)  If n=1 for example, this is an open   interval (s,t). So, for n=2 this   defines a collection of points in a circle containing  the point (a,b) where both f_x  and f_(y )   are zero. In this case, once the 1st  and 2nd partial derivatives of f exist  and the both f_(xy)  and f_(yx  )  are  continuous for the set of points (x,y)  in the disc, these two mixed partial  2nd derivatives are equal, i.e f_(xy) =f_(yx) .

$${f}_{{x}} \:{is}\:{partial}\:{differentiation}\:{of}\:{f}\:{w}.{r}.{t}\:\:{x} \\ $$$${f}_{{xy}} =\frac{\partial}{\partial{y}}\left({f}_{{x}} \right)=\frac{\partial}{\partial{y}}\left(\frac{\partial{f}}{\partial{x}}\right)=\frac{\partial^{\mathrm{2}} {f}}{\partial{y}\partial{x}}\:\left({mixed}\:\mathrm{2}{nd}\:{partial}\:{derivative}\right) \\ $$$${An}\:{n}−{dimensional}\:{open}\:{disc}\:{of} \\ $$$${radius}\:{r}\:{is}\:{the}\:{collection}\:{of}\:{points}\:{less} \\ $$$${than}\:{a}\:{distance}\:{of}\:{r}\:{away}\:{from}\:{a}\:{fixed} \\ $$$${point}\:{in}\:{Euclidean}\:{n}−\:{space}.\:\left({Wolfram}\:{Alpha}\right) \\ $$$${If}\:{n}=\mathrm{1}\:{for}\:{example},\:{this}\:{is}\:{an}\:{open}\: \\ $$$${interval}\:\left({s},{t}\right).\:{So},\:{for}\:{n}=\mathrm{2}\:{this}\: \\ $$$${defines}\:{a}\:{collection}\:{of}\:{points}\:{in}\:{a}\:{circle}\:{containing} \\ $$$${the}\:{point}\:\left({a},{b}\right)\:{where}\:{both}\:{f}_{{x}} \:{and}\:{f}_{{y}\:} \\ $$$${are}\:{zero}.\:{In}\:{this}\:{case},\:{once}\:{the}\:\mathrm{1}{st} \\ $$$${and}\:\mathrm{2}{nd}\:{partial}\:{derivatives}\:{of}\:{f}\:{exist} \\ $$$${and}\:{the}\:{both}\:{f}_{{xy}} \:{and}\:{f}_{{yx}\:\:} \:{are} \\ $$$${continuous}\:{for}\:{the}\:{set}\:{of}\:{points}\:\left({x},{y}\right) \\ $$$${in}\:{the}\:{disc},\:{these}\:{two}\:{mixed}\:{partial} \\ $$$$\mathrm{2}{nd}\:{derivatives}\:{are}\:{equal},\:{i}.{e}\:{f}_{{xy}} ={f}_{{yx}} . \\ $$

Commented by Filup last updated on 22/Nov/15

I see. Very interesting. I must go learn  multi−variable calculus!

$$\mathrm{I}\:\mathrm{see}.\:\mathrm{Very}\:\mathrm{interesting}.\:\mathrm{I}\:\mathrm{must}\:\mathrm{go}\:\mathrm{learn} \\ $$$$\mathrm{multi}−\mathrm{variable}\:\mathrm{calculus}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com