Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 25589 by behi.8.3.4.17@gmail.com last updated on 11/Dec/17

possible or not ?          a^a +b^b > a^b +b^a   with below conditions:   case 1)  a>b>1  case 2)    0<b<a<1

possibleornot? aa+bb>ab+ba withbelowconditions: case1)a>b>1 case2)0<b<a<1

Commented byprakash jain last updated on 12/Dec/17

a=3,b=2  27+4=31>9+8=17

a=3,b=2 27+4=31>9+8=17

Commented bymoxhix last updated on 12/Dec/17

a^b +b^a <a^a +b^b    , b<a  ⇔a^b −b^b −(a^a −b^a )<0  ⇔(((a^b −b^b )−(a^a −b^a ))/(b−a))>0  (∵b−a<0)    let f(x)=a^x −b^x   (x>0)  f ′(x)=a^x lna−b^x lnb  (i)1<b<a    0<lnb<lna, 0<b^x <a^x     ∴f ′(x)>0 (∀x>0)  (ii)0<b<a<1    lnb<lna<0, 0<b^x <a^x     ∴f ′(x)<0 (∀x>0)    Mean Value Theorem  ∃c∈(b,a)s.t.f ′(c)=((f(b)−f(a))/(b−a))  ∴    1<b<a⇒f ′(c)=((a^b −b^b −(a^a −b^a ))/(b−a))>0    0<b<a⇒f ′(c)<0

ab+ba<aa+bb,b<a abbb(aaba)<0 (abbb)(aaba)ba>0(ba<0) letf(x)=axbx(x>0) f(x)=axlnabxlnb (i)1<b<a 0<lnb<lna,0<bx<ax f(x)>0(x>0) (ii)0<b<a<1 lnb<lna<0,0<bx<ax f(x)<0(x>0) MeanValueTheorem c(b,a)s.t.f(c)=f(b)f(a)ba 1<b<af(c)=abbb(aaba)ba>0 0<b<af(c)<0

Commented bybehi.8.3.4.17@gmail.com last updated on 12/Dec/17

thank you very much dear.your   solution is so beautiful.

thankyouverymuchdear.your solutionissobeautiful.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com