Question and Answers Forum

All Questions      Topic List

Logarithms Questions

Previous in All Question      Next in All Question      

Previous in Logarithms      Next in Logarithms      

Question Number 25593 by behi.8.3.4.17@gmail.com last updated on 11/Dec/17

if  :   log_6 ^(45) =x  ,   log_(18) ^(24) =y  then :   log _(12)^(25)  =?(in terms of x,y)

if:log645=x,log1824=ythen:log1225=?(intermsofx,y)

Answered by Rasheed.Sindhi last updated on 14/Dec/17

log_6 45=x⇒6^x =45⇒2^x .3^x =3^2 .5..........(i)  log_(18) 24=y⇒18^y =24⇒2^y .3^(2y) =2^3 .3........(ii)  log_(12) 25=z (say)⇒12^z =25⇒2^(2z) .3^z =5^2 .....(iii)  Determining z in terms of x,y.  (i)×(ii)×(iii):      (2^x .3^x )(2^y .3^(2y) )(2^(2z) .3^z )=(3^2 .5)(2^3 .3)(5^2 )     2^(x+y+2z) .3^(x+2y+z) =2^3 .3^3 .5^3      2^(x+y) .2^(2z) .3^(x+2y) .3^z =2^3 .3^3 .5^3              ( 2^2 )^z (3)^z =((2^3 .3^3 .5^3 )/(2^(x+y) .3^(x+2y) ))                  12^z =2^(3-x-y) .3^(3-x-2y) .5^3                   log(12^z )=log(2^(3-x-y) .3^(3-x-2y) .5^3 )        log_(12) 25=((log(2^(3-x-y) .3^(3-x-2y) .5^3 ))/(log(12)))                               Or    log_(12) 25=log_(12) (2^(3-x-y) .3^(3-x-2y) .5^3 )

log645=x6x=452x.3x=32.5..........(i)log1824=y18y=242y.32y=23.3........(ii)log1225=z(say)12z=2522z.3z=52.....(iii)Determiningzintermsofx,y.(i)×(ii)×(iii):(2x.3x)(2y.32y)(22z.3z)=(32.5)(23.3)(52)2x+y+2z.3x+2y+z=23.33.532x+y.22z.3x+2y.3z=23.33.53(22)z(3)z=23.33.532x+y.3x+2y12z=23xy.33x2y.53log(12z)=log(23xy.33x2y.53)log1225=log(23xy.33x2y.53)log(12)Orlog1225=log12(23xy.33x2y.53)

Commented by Rasheed.Sindhi last updated on 14/Dec/17

The answer has been corrected.

Theanswerhasbeencorrected.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com