Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 25602 by behi.8.3.4.17@gmail.com last updated on 11/Dec/17

Commented by behi.8.3.4.17@gmail.com last updated on 11/Dec/17

A circle passes through   mid points of sides of  triangle AB^△ C .  find:  1)its radius in term of:a,b,c.  2)distance of its center from:A,B,C.  3)distance from its centre to  centerpoint of out circle of: AB^△ C.

AcirclepassesthroughmidpointsofsidesoftriangleABC.find:1)itsradiusintermof:a,b,c.2)distanceofitscenterfrom:A,B,C.3)distancefromitscentretocenterpointofoutcircleof:ABC.

Answered by mrW1 last updated on 12/Dec/17

DE=(a/2)=a′  DF=(b/2)=b′  EF=(c/2)=c′  r=((a′b′c′)/(4A_(DEF) ))=((a′b′c′)/(4(√(s′(s′−a′)(s′−b′)(s′−c′)))))  s′=((a′+b′+c′)/2)=((a+b+c)/4)=(s/2)  ⇒r=((abc)/(8(√(s(s−a)(s−b)(s−c)))))

DE=a2=aDF=b2=bEF=c2=cr=abc4ADEF=abc4s(sa)(sb)(sc)s=a+b+c2=a+b+c4=s2r=abc8s(sa)(sb)(sc)

Commented by behi.8.3.4.17@gmail.com last updated on 12/Dec/17

thank you so much dear MrW1.  Do you have any solutions for#2,#3?  please!

thankyousomuchdearMrW1.You can't use 'macro parameter character #' in math modeplease!

Commented by mrW1 last updated on 12/Dec/17

to Q3:  the circle above is the so called nine−  point circle. it is half so large as the  circumcircle: r=(R/2) with  R=radius of circumcircle and  R=((abc)/(4(√(s(s−a)(s−b)(s−c)))))  The distance between the nine−point  circle center and the circumcenter  is   ΔL=(1/2)(√(9R^2 −a^2 −b^2 −c^2 ))

toQ3:thecircleaboveisthesocalledninepointcircle.itishalfsolargeasthecircumcircle:r=R2withR=radiusofcircumcircleandR=abc4s(sa)(sb)(sc)ThedistancebetweentheninepointcirclecenterandthecircumcenterisΔL=129R2a2b2c2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com