Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 25605 by behi.8.3.4.17@gmail.com last updated on 11/Dec/17

Commented by behi.8.3.4.17@gmail.com last updated on 12/Dec/17

from midpoints of sides draw perpendicular  lines to opposite sides.find the ratio of  area of inner hexagon to area of:AB^△ C.

frommidpointsofsidesdrawperpendicularlinestooppositesides.findtheratioofareaofinnerhexagontoareaof:ABC.

Commented by ajfour last updated on 12/Dec/17

Commented by ajfour last updated on 12/Dec/17

△ABC=(1/2)(2a)(2c)=2ac  △DEF=(1/4)(△ABC)=((ac)/2)  △DGF=(1/2)×FM×(MD−GM)   =(1/2)×b×(c−(b/(tan C)) )=(b/2)[c−((b(a−b))/c)]          =((b(c^2 +b^2 −ab))/(2c)) .  △FEB=(1/2)×NF×(EN−IN)        =(1/2)(a−b)[c−((a−b)/(tan B))]       =(1/2)(a−b)[c−(((a−b)b)/c)]      =(((a−b)(c^2 +b^2 −ab))/(2c)) .   and  y(tan B+tan C)=a  ⇒   y=(a/(((c/b)+(c/(a−b))))) =((b(a−b))/c)  △HED=(1/2)×a×y        =((ab(a−b))/(2c))  Area(hexagon)=Ar(△DEF)+       Ar(△DGF)+Ar(△FEB)+       Ar(△HED)      =((ac)/2)+(b/(2c))(c^2 +b^2 −ab)+          (((a−b)(c^2 +b^2 −ab))/(2c))+((ab(a−b))/(2c))      =((ac)/2)+(((c^2 +b^2 −ab)a)/(2c))+(((ab−b^2 )a)/(2c))   =(a/(2c))(c^2 +c^2 ) =ac  so  ((Ar(hexagon))/(Ar(△ABC)))=((ac)/(2ac)) =(1/2) .

ABC=12(2a)(2c)=2acDEF=14(ABC)=ac2DGF=12×FM×(MDGM)=12×b×(cbtanC)=b2[cb(ab)c]=b(c2+b2ab)2c.FEB=12×NF×(ENIN)=12(ab)[cabtanB]=12(ab)[c(ab)bc]=(ab)(c2+b2ab)2c.andy(tanB+tanC)=ay=a(cb+cab)=b(ab)cHED=12×a×y=ab(ab)2cArea(hexagon)=Ar(DEF)+Ar(DGF)+Ar(FEB)+Ar(HED)=ac2+b2c(c2+b2ab)+(ab)(c2+b2ab)2c+ab(ab)2c=ac2+(c2+b2ab)a2c+(abb2)a2c=a2c(c2+c2)=acsoAr(hexagon)Ar(ABC)=ac2ac=12.

Commented by behi.8.3.4.17@gmail.com last updated on 12/Dec/17

thank you very much mr Ajfour.  it is a elegant approach!

thankyouverymuchmrAjfour.itisaelegantapproach!

Answered by mrW1 last updated on 12/Dec/17

Commented by mrW1 last updated on 12/Dec/17

An other way:  ΔDEF=(1/4)ΔABC  ΔDIE=ΔAGF=ΔFHC  ΔFGD=ΔCHE=ΔEIB  ΔEHF=ΔBID=ΔDGA  ⇒ΔDIE+ΔFGD+ΔEHF=ΔBDE=(1/4)ΔABC  A_(HEXAGON) =ΔDEF+ΔDIE+ΔFGD+ΔEHF  =(1/4)+(1/4)=(1/2)ΔABC

Anotherway:ΔDEF=14ΔABCΔDIE=ΔAGF=ΔFHCΔFGD=ΔCHE=ΔEIBΔEHF=ΔBID=ΔDGAΔDIE+ΔFGD+ΔEHF=ΔBDE=14ΔABCAHEXAGON=ΔDEF+ΔDIE+ΔFGD+ΔEHF=14+14=12ΔABC

Commented by ajfour last updated on 12/Dec/17

elegant shading Sir!

elegantshadingSir!

Commented by behi.8.3.4.17@gmail.com last updated on 12/Dec/17

Hi dear master.as mr Ajfour said,it is  a beautiful and smart solution.thanks.

Hidearmaster.asmrAjfoursaid,itisabeautifulandsmartsolution.thanks.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com