All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 25682 by abdo imad last updated on 13/Dec/17
wegive∫0∞ta−1(1+t)−1dt=π(sin(πa))−1with0<a<1findthevalueof∫0∞(1+x16)−1dx
Answered by ajfour last updated on 13/Dec/17
Ifx16=tandlet∫dx1+x16=I ThenI=∫dt16x15(1+t) =116∫0∞t−15/16dt1+t =116∫0∞t116−1dt1+t=116×πsin(π16) sinπ16=1−cos(π/8)2 =1−1+1/222.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com