Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 25828 by Tinkutara last updated on 15/Dec/17

Two particles A and B of equal masses  m are tied with an inextensible string  of length 2l. The initial distance  between A and B is l. Particle A is  given speed v. Find the speed of  particle A and B just after the string  becomes taut.

$${Two}\:{particles}\:{A}\:{and}\:{B}\:{of}\:{equal}\:{masses} \\ $$$${m}\:{are}\:{tied}\:{with}\:{an}\:{inextensible}\:{string} \\ $$$${of}\:{length}\:\mathrm{2}{l}.\:{The}\:{initial}\:{distance} \\ $$$${between}\:{A}\:{and}\:{B}\:{is}\:{l}.\:{Particle}\:{A}\:{is} \\ $$$${given}\:{speed}\:{v}.\:{Find}\:{the}\:{speed}\:{of} \\ $$$${particle}\:{A}\:{and}\:{B}\:{just}\:{after}\:{the}\:{string} \\ $$$${becomes}\:{taut}. \\ $$

Commented by Tinkutara last updated on 15/Dec/17

Answered by ajfour last updated on 16/Dec/17

v_A =(v/4) , v_B =((3v)/4)   just after string   becomes taut the second time.

$${v}_{{A}} =\frac{{v}}{\mathrm{4}}\:,\:{v}_{{B}} =\frac{\mathrm{3}{v}}{\mathrm{4}}\:\:\:{just}\:{after}\:{string} \\ $$$$\:{becomes}\:{taut}\:{the}\:{second}\:{time}. \\ $$

Answered by mrW1 last updated on 16/Dec/17

⇒v_A cos θ=v_B    ...(i)  mv×sin 30=mv_A sin θ  ⇒(v/2)=v_A sin θ   ...(ii)  mv×cos 30=mv_A cos θ+mv_B   ⇒((√3)/2)v =v_A cos θ+v_B =2v_B    ...(iii)  ⇒v_B =((√3)/4)v  (ii)/(i):  tan θ=(v/(2v_B ))=((v×4)/(2×(√3) v))=((2(√3))/3)  ⇒θ=tan^(−1) ((2(√3))/3)≈49.1°  sin θ=(2/(√7))  (ii):  v_A =(v/(2sin θ))=(((√7)v)/4)

$$\Rightarrow{v}_{{A}} \mathrm{cos}\:\theta={v}_{{B}} \:\:\:...\left({i}\right) \\ $$$${mv}×\mathrm{sin}\:\mathrm{30}={mv}_{{A}} \mathrm{sin}\:\theta \\ $$$$\Rightarrow\frac{{v}}{\mathrm{2}}={v}_{{A}} \mathrm{sin}\:\theta\:\:\:...\left({ii}\right) \\ $$$${mv}×\mathrm{cos}\:\mathrm{30}={mv}_{{A}} \mathrm{cos}\:\theta+{mv}_{{B}} \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{v}\:={v}_{{A}} \mathrm{cos}\:\theta+{v}_{{B}} =\mathrm{2}{v}_{{B}} \:\:\:...\left({iii}\right) \\ $$$$\Rightarrow{v}_{{B}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{v} \\ $$$$\left({ii}\right)/\left({i}\right): \\ $$$$\mathrm{tan}\:\theta=\frac{{v}}{\mathrm{2}{v}_{{B}} }=\frac{{v}×\mathrm{4}}{\mathrm{2}×\sqrt{\mathrm{3}}\:{v}}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$\Rightarrow\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\approx\mathrm{49}.\mathrm{1}° \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{2}}{\sqrt{\mathrm{7}}} \\ $$$$\left({ii}\right): \\ $$$${v}_{{A}} =\frac{{v}}{\mathrm{2sin}\:\theta}=\frac{\sqrt{\mathrm{7}}{v}}{\mathrm{4}} \\ $$

Commented by mrW1 last updated on 16/Dec/17

Thanks, this is my question. I made  following image, but could not post.

$${Thanks},\:{this}\:{is}\:{my}\:{question}.\:{I}\:{made} \\ $$$${following}\:{image},\:{but}\:{could}\:{not}\:{post}. \\ $$

Commented by Tinkutara last updated on 16/Dec/17

Thank you Sir!

Commented by mrW1 last updated on 16/Dec/17

Commented by ajfour last updated on 16/Dec/17

disagree with line 1 .

$${disagree}\:{with}\:{line}\:\mathrm{1}\:. \\ $$

Commented by mrW1 last updated on 16/Dec/17

after the string is got taut, both articles  have the same speed in the direction  of the string. what is wrong?

$${after}\:{the}\:{string}\:{is}\:{got}\:{taut},\:{both}\:{articles} \\ $$$${have}\:{the}\:{same}\:{speed}\:{in}\:{the}\:{direction} \\ $$$${of}\:{the}\:{string}.\:{what}\:{is}\:{wrong}? \\ $$

Commented by ajfour last updated on 16/Dec/17

v_A sin θ=(v/2)    (alright)  v_B +v_A cos θ=((v(√3))/2)   (fine)  but θ=90°    (should be)  ⇒ v_A =(v/2) ,   v_B =((v(√3))/2) .  After this distance decreases  and increases again when  there is again a jerk exchange  via the string. string shall remain  taut after this second jerk and  v_A =((1v)/4),     v_B =((3v)/4) just after this   second jerk.

$${v}_{{A}} \mathrm{sin}\:\theta=\frac{{v}}{\mathrm{2}}\:\:\:\:\left({alright}\right) \\ $$$${v}_{{B}} +{v}_{{A}} \mathrm{cos}\:\theta=\frac{{v}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\:\left({fine}\right) \\ $$$${but}\:\theta=\mathrm{90}°\:\:\:\:\left({should}\:{be}\right) \\ $$$$\Rightarrow\:{v}_{{A}} =\frac{{v}}{\mathrm{2}}\:,\:\:\:{v}_{{B}} =\frac{{v}\sqrt{\mathrm{3}}}{\mathrm{2}}\:. \\ $$$${After}\:{this}\:{distance}\:{decreases} \\ $$$${and}\:{increases}\:{again}\:{when} \\ $$$${there}\:{is}\:{again}\:{a}\:{jerk}\:{exchange} \\ $$$${via}\:{the}\:{string}.\:{string}\:{shall}\:{remain} \\ $$$${taut}\:{after}\:{this}\:{second}\:{jerk}\:{and} \\ $$$${v}_{{A}} =\frac{\mathrm{1}{v}}{\mathrm{4}},\:\:\:\:\:{v}_{{B}} =\frac{\mathrm{3}{v}}{\mathrm{4}}\:{just}\:{after}\:{this}\: \\ $$$${second}\:{jerk}. \\ $$

Commented by ajfour last updated on 16/Dec/17

Commented by ajfour last updated on 16/Dec/17

it is a string,  the velocity  component along the string  length will be exchanged.  v_A (parallel to string) =0  v_B =((v(√3))/2)  (along string length).  separation between A and B  decreases hereafter and when  again increases to 2l whereupon  their is another impulse exchange  and A and B will come in a  vertical line of plane (i shall  post image). After this   their velocities become parallel  to direction of original velocity  v  with v_A =((1v)/4)   and  v_B =((3v)/4) .

$${it}\:{is}\:{a}\:{string},\:\:{the}\:{velocity} \\ $$$${component}\:{along}\:{the}\:{string} \\ $$$${length}\:{will}\:{be}\:{exchanged}. \\ $$$${v}_{{A}} \left({parallel}\:{to}\:{string}\right)\:=\mathrm{0} \\ $$$${v}_{{B}} =\frac{{v}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\left({along}\:{string}\:{length}\right). \\ $$$${separation}\:{between}\:{A}\:{and}\:{B} \\ $$$${decreases}\:{hereafter}\:{and}\:{when} \\ $$$${again}\:{increases}\:{to}\:\mathrm{2}{l}\:{whereupon} \\ $$$${their}\:{is}\:{another}\:{impulse}\:{exchange} \\ $$$${and}\:{A}\:{and}\:{B}\:{will}\:{come}\:{in}\:{a} \\ $$$${vertical}\:{line}\:{of}\:{plane}\:\left({i}\:{shall}\right. \\ $$$$\left.{post}\:{image}\right).\:{After}\:{this}\: \\ $$$${their}\:{velocities}\:{become}\:{parallel} \\ $$$${to}\:{direction}\:{of}\:{original}\:{velocity} \\ $$$${v}\:\:{with}\:{v}_{{A}} =\frac{\mathrm{1}{v}}{\mathrm{4}}\:\:\:{and}\:\:{v}_{{B}} =\frac{\mathrm{3}{v}}{\mathrm{4}}\:. \\ $$

Commented by ajfour last updated on 16/Dec/17

Commented by ajfour last updated on 16/Dec/17

consider the case in this image,  and do think again..

$${consider}\:{the}\:{case}\:{in}\:{this}\:{image}, \\ $$$${and}\:{do}\:{think}\:{again}.. \\ $$

Commented by mrW1 last updated on 16/Dec/17

Commented by mrW1 last updated on 16/Dec/17

My question is if (1) or (2) is correct.  Or it is not certain what happens.

$${My}\:{question}\:{is}\:{if}\:\left(\mathrm{1}\right)\:{or}\:\left(\mathrm{2}\right)\:{is}\:{correct}. \\ $$$${Or}\:{it}\:{is}\:{not}\:{certain}\:{what}\:{happens}. \\ $$

Commented by ajfour last updated on 16/Dec/17

(2) is correct .

$$\left(\mathrm{2}\right)\:{is}\:{correct}\:. \\ $$

Commented by ajfour last updated on 16/Dec/17

Commented by ajfour last updated on 16/Dec/17

If tied with string (and no energy  losses)  just the forces and  velocities will have opposite  directions.

$${If}\:{tied}\:{with}\:{string}\:\left({and}\:{no}\:{energy}\right. \\ $$$$\left.{losses}\right)\:\:{just}\:{the}\:{forces}\:{and} \\ $$$${velocities}\:{will}\:{have}\:{opposite} \\ $$$${directions}. \\ $$

Commented by mrW1 last updated on 16/Dec/17

I see now.  This is because the collision  is perfectly elastic.  m_A u=m_A v_A +m_B v_B   ⇒u=v_A +v_B   ⇒u^2 =v_A ^2 +v_B ^2 +2v_A v_B     (1/2)m_A u^2 =(1/2)m_A v_A ^2 +(1/2)m_B v_B ^2   ⇒u^2 =v_A ^2 +v_B ^2     ⇒v_A v_B =0  if v_B ≠0, then v_A =0.

$${I}\:{see}\:{now}. \\ $$$${This}\:{is}\:{because}\:{the}\:{collision} \\ $$$${is}\:{perfectly}\:{elastic}. \\ $$$${m}_{{A}} {u}={m}_{{A}} {v}_{{A}} +{m}_{{B}} {v}_{{B}} \\ $$$$\Rightarrow{u}={v}_{{A}} +{v}_{{B}} \\ $$$$\Rightarrow{u}^{\mathrm{2}} ={v}_{{A}} ^{\mathrm{2}} +{v}_{{B}} ^{\mathrm{2}} +\mathrm{2}{v}_{{A}} {v}_{{B}} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{m}_{{A}} {u}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}{m}_{{A}} {v}_{{A}} ^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}_{{B}} {v}_{{B}} ^{\mathrm{2}} \\ $$$$\Rightarrow{u}^{\mathrm{2}} ={v}_{{A}} ^{\mathrm{2}} +{v}_{{B}} ^{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow{v}_{{A}} {v}_{{B}} =\mathrm{0} \\ $$$${if}\:{v}_{{B}} \neq\mathrm{0},\:{then}\:{v}_{{A}} =\mathrm{0}. \\ $$

Commented by ajfour last updated on 16/Dec/17

thanks for the notice Sir!

$${thanks}\:{for}\:{the}\:{notice}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com