Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 25845 by NECx last updated on 15/Dec/17

using the 1st principle find the  derivative of        y=(ax+b)^n

$${using}\:{the}\:\mathrm{1}{st}\:{principle}\:{find}\:{the} \\ $$$${derivative}\:{of}\: \\ $$$$\:\:\:\:\:{y}=\left({ax}+{b}\right)^{{n}} \\ $$

Answered by ajfour last updated on 15/Dec/17

(dy/dx)=lim_(h→0) (((ax+ah+b)^n −(ax+b)^n )/h)      =lim_(h→0) ((ah)/h)×lim_(h→0) [(ax+ah+b)^(n−1) +        (ax+ah+b)^(n−2) (ax+b)+        (ax+ah+b)^(n−3) (ax+b)^2 +...     .....+ (ax+ah+b)(ax+b)^(n−2) +         (ax+b)^(n−1) ]      ((d(ax+b)^n )/dx)=an(ax+b)^(n−1)  .

$$\frac{{dy}}{{dx}}=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({ax}+{ah}+{b}\right)^{{n}} −\left({ax}+{b}\right)^{{n}} }{{h}} \\ $$$$\:\:\:\:=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ah}}{{h}}×\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\left({ax}+{ah}+{b}\right)^{{n}−\mathrm{1}} +\right. \\ $$$$\:\:\:\:\:\:\left({ax}+{ah}+{b}\right)^{{n}−\mathrm{2}} \left({ax}+{b}\right)+ \\ $$$$\:\:\:\:\:\:\left({ax}+{ah}+{b}\right)^{{n}−\mathrm{3}} \left({ax}+{b}\right)^{\mathrm{2}} +... \\ $$$$\:\:\:.....+\:\left({ax}+{ah}+{b}\right)\left({ax}+{b}\right)^{{n}−\mathrm{2}} + \\ $$$$\left.\:\:\:\:\:\:\:\left({ax}+{b}\right)^{{n}−\mathrm{1}} \right] \\ $$$$\:\:\:\:\frac{{d}\left({ax}+{b}\right)^{{n}} }{{dx}}={an}\left({ax}+{b}\right)^{{n}−\mathrm{1}} \:. \\ $$

Commented by NECx last updated on 16/Dec/17

i still dont get how you removed  lim_(x→0)  ((ah)/h)

$${i}\:{still}\:{dont}\:{get}\:{how}\:{you}\:{removed} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{ah}}{{h}} \\ $$

Commented by ajfour last updated on 16/Dec/17

x^n −y^n =(x−y)(x^(n−1) +x^(n−2) y+..                      ...+xy^(n−2) +y^(n−1) )  so in your question we have    x^n =(ax+ah+b)^n   and   y^n =(ax+b)^n   so   (x−y)=ah.

$${x}^{{n}} −{y}^{{n}} =\left({x}−{y}\right)\left({x}^{{n}−\mathrm{1}} +{x}^{{n}−\mathrm{2}} {y}+..\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...+{xy}^{{n}−\mathrm{2}} +{y}^{{n}−\mathrm{1}} \right) \\ $$$${so}\:{in}\:{your}\:{question}\:{we}\:{have} \\ $$$$\:\:{x}^{{n}} =\left({ax}+{ah}+{b}\right)^{{n}} \\ $$$${and}\:\:\:{y}^{{n}} =\left({ax}+{b}\right)^{{n}} \\ $$$${so}\:\:\:\left({x}−{y}\right)={ah}. \\ $$

Answered by rita1608 last updated on 15/Dec/17

((lim)/(h→0))  (((a(x+h)+b)^n −(ax+b)^n )/h)  =((lim)/(h→0))   (((ax+ah+b)^n −(ax+b)^n )/h)  =((lim)/(h→0)) (((ax+b)^n −(ax+b)^n )/h)=0

$$\frac{{lim}}{{h}\rightarrow\mathrm{0}}\:\:\frac{\left({a}\left({x}+{h}\right)+{b}\right)^{{n}} −\left({ax}+{b}\right)^{{n}} }{{h}} \\ $$$$=\frac{{lim}}{{h}\rightarrow\mathrm{0}}\:\:\:\frac{\left({ax}+{ah}+{b}\right)^{{n}} −\left({ax}+{b}\right)^{{n}} }{{h}} \\ $$$$=\frac{{lim}}{{h}\rightarrow\mathrm{0}}\:\frac{\left({ax}+{b}\right)^{{n}} −\left({ax}+{b}\right)^{{n}} }{{h}}=\mathrm{0} \\ $$

Commented by rita1608 last updated on 16/Dec/17

thanks for the correction

$${thanks}\:{for}\:{the}\:{correction}\: \\ $$$$ \\ $$

Commented by prakash jain last updated on 15/Dec/17

In the last step you substituted  h=0 in numerator and left  h in denominator. This is not correct.  with this you will get 0 for every  derivative.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{last}\:\mathrm{step}\:\mathrm{you}\:\mathrm{substituted} \\ $$$${h}=\mathrm{0}\:\mathrm{in}\:\mathrm{numerator}\:\mathrm{and}\:\mathrm{left} \\ $$$${h}\:\mathrm{in}\:\mathrm{denominator}.\:\mathrm{This}\:\mathrm{is}\:\mathrm{not}\:\mathrm{correct}. \\ $$$$\mathrm{with}\:\mathrm{this}\:\mathrm{you}\:\mathrm{will}\:\mathrm{get}\:\mathrm{0}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{derivative}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com