Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 2589 by Filup last updated on 23/Nov/15

f_n =(1/n)(n+f_(n−1) )  f_1 =1    Evaluate:  S=Σ_(i=1) ^m f_i

$${f}_{{n}} =\frac{\mathrm{1}}{{n}}\left({n}+{f}_{{n}−\mathrm{1}} \right) \\ $$$${f}_{\mathrm{1}} =\mathrm{1} \\ $$$$ \\ $$$$\mathrm{Evaluate}: \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}{f}_{{i}} \\ $$

Commented by 123456 last updated on 23/Nov/15

?????

$$????? \\ $$

Commented by Filup last updated on 23/Nov/15

my working was incorrect i belive  :( oh well

$$\mathrm{my}\:\mathrm{working}\:\mathrm{was}\:\mathrm{incorrect}\:\mathrm{i}\:\mathrm{belive} \\ $$$$:\left(\:{oh}\:{well}\right. \\ $$

Commented by Filup last updated on 23/Nov/15

Oh. It seems I was over thinking.

$$\mathrm{Oh}.\:\mathrm{It}\:\mathrm{seems}\:\mathrm{I}\:\mathrm{was}\:\mathrm{over}\:\mathrm{thinking}.\: \\ $$

Answered by 123456 last updated on 23/Nov/15

f_n =(1/n)(n+f_(n−1) )=1+(f_(n−1) /n),n≠0  f_(n−1) =n(f_n −1)  f_0 =1(f_1 −1)=0  f_1 =1+(f_0 /1)=1  f_2 =1+(f_1 /2)=1+(1/2)=(3/2)  f_3 =1+(f_2 /3)=1+(1/2)=(3/2)=1+(1/3)+(1/6)  f_4 =1+(f_3 /4)=1+(3/8)=((11)/8)=1+(1/4)+(1/(12))+(1/(4!))  f_5 =1+(f_4 /5)=1+((11)/(40))=((51)/(40))=1+(1/5)+(1/(20))+(1/(60))+(1/(5!))  −−−−continue−−−−−

$${f}_{{n}} =\frac{\mathrm{1}}{{n}}\left({n}+{f}_{{n}−\mathrm{1}} \right)=\mathrm{1}+\frac{{f}_{{n}−\mathrm{1}} }{{n}},{n}\neq\mathrm{0} \\ $$$${f}_{{n}−\mathrm{1}} ={n}\left({f}_{{n}} −\mathrm{1}\right) \\ $$$${f}_{\mathrm{0}} =\mathrm{1}\left({f}_{\mathrm{1}} −\mathrm{1}\right)=\mathrm{0} \\ $$$${f}_{\mathrm{1}} =\mathrm{1}+\frac{{f}_{\mathrm{0}} }{\mathrm{1}}=\mathrm{1} \\ $$$${f}_{\mathrm{2}} =\mathrm{1}+\frac{{f}_{\mathrm{1}} }{\mathrm{2}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${f}_{\mathrm{3}} =\mathrm{1}+\frac{{f}_{\mathrm{2}} }{\mathrm{3}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${f}_{\mathrm{4}} =\mathrm{1}+\frac{{f}_{\mathrm{3}} }{\mathrm{4}}=\mathrm{1}+\frac{\mathrm{3}}{\mathrm{8}}=\frac{\mathrm{11}}{\mathrm{8}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{12}}+\frac{\mathrm{1}}{\mathrm{4}!} \\ $$$${f}_{\mathrm{5}} =\mathrm{1}+\frac{{f}_{\mathrm{4}} }{\mathrm{5}}=\mathrm{1}+\frac{\mathrm{11}}{\mathrm{40}}=\frac{\mathrm{51}}{\mathrm{40}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{20}}+\frac{\mathrm{1}}{\mathrm{60}}+\frac{\mathrm{1}}{\mathrm{5}!} \\ $$$$−−−−\mathrm{continue}−−−−− \\ $$

Commented by 123456 last updated on 23/Nov/15

f_2 =1+(f_1 /2)  f_3 =1+(f_2 /3)=1+(1/3)+(f_1 /6)  f_4 =1+(f_3 /4)=1+(1/4)+(1/(12))+(f_1 /(4!))  f_5 =1+(f_4 /5)=1+(1/5)+(1/(20))+(1/(60))+(f_1 /(5!))  ⋮  f_n =S_n +(f_1 /(n!))     (n∈N^∗ )  S_n =1+(S_(n−1) /n),S_1 =0,S_2 =1,...

$${f}_{\mathrm{2}} =\mathrm{1}+\frac{{f}_{\mathrm{1}} }{\mathrm{2}} \\ $$$${f}_{\mathrm{3}} =\mathrm{1}+\frac{{f}_{\mathrm{2}} }{\mathrm{3}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{{f}_{\mathrm{1}} }{\mathrm{6}} \\ $$$${f}_{\mathrm{4}} =\mathrm{1}+\frac{{f}_{\mathrm{3}} }{\mathrm{4}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{12}}+\frac{{f}_{\mathrm{1}} }{\mathrm{4}!} \\ $$$${f}_{\mathrm{5}} =\mathrm{1}+\frac{{f}_{\mathrm{4}} }{\mathrm{5}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{20}}+\frac{\mathrm{1}}{\mathrm{60}}+\frac{{f}_{\mathrm{1}} }{\mathrm{5}!} \\ $$$$\vdots \\ $$$${f}_{{n}} =\mathrm{S}_{{n}} +\frac{{f}_{\mathrm{1}} }{{n}!}\:\:\:\:\:\left({n}\in\mathbb{N}^{\ast} \right) \\ $$$$\mathrm{S}_{{n}} =\mathrm{1}+\frac{\mathrm{S}_{{n}−\mathrm{1}} }{{n}},\mathrm{S}_{\mathrm{1}} =\mathrm{0},\mathrm{S}_{\mathrm{2}} =\mathrm{1},... \\ $$

Answered by prakash jain last updated on 23/Nov/15

f_n =1+(1/n)+(1/(n(n−1)))+...+(1/(n!))  f_n =(1/(n!))(n!+(n−1)!+(n−2)!+..+1)  f_i =Σ_(k=1) ^i ((k!)/(i!))  S=Σ_(i=1) ^n  Σ_(k=1) ^i ((k!)/(i!))  I think a closed form expression for sum  may be possible in terms of gamma function.

$${f}_{{n}} =\mathrm{1}+\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{{n}\left({n}−\mathrm{1}\right)}+...+\frac{\mathrm{1}}{{n}!} \\ $$$${f}_{{n}} =\frac{\mathrm{1}}{{n}!}\left({n}!+\left({n}−\mathrm{1}\right)!+\left({n}−\mathrm{2}\right)!+..+\mathrm{1}\right) \\ $$$${f}_{{i}} =\underset{{k}=\mathrm{1}} {\overset{{i}} {\sum}}\frac{{k}!}{{i}!} \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\underset{{k}=\mathrm{1}} {\overset{{i}} {\sum}}\frac{{k}!}{{i}!} \\ $$$$\mathrm{I}\:\mathrm{think}\:\mathrm{a}\:\mathrm{closed}\:\mathrm{form}\:\mathrm{expression}\:\mathrm{for}\:\mathrm{sum} \\ $$$$\mathrm{may}\:\mathrm{be}\:\mathrm{possible}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{gamma}\:\mathrm{function}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com