Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 25960 by abdo imad last updated on 16/Dec/17

answer to 25955.we introduce the parametric function  F(t) =∫_0 ^∞   ln(1+(1+x^2_  )t)(1+x^2 )^(−1) dx after verifying that   F is derivable on[0.∝[  we find   ∂F/∂t=  ∫_0 ^∞ ( (1+(1+x^2 )t)^(−1) dx  ∂F/∂t=1/2 ∫_R (tx^2 +t+1)^(−1) dx   we put  f(z) =(tz^2 +z+1)^(−1)   let find the poles of f..tz^2 +z+1=0 <−>  z=+−i((t+1)t^(−1) )^(1/2)   and the poles are  z_0 =i((t+1)t^(−1) )^(1/2)   and   z_1 =−i((t+1)t^(−1) )^(1/2)   and  f(t)  =(t(t−z_0 )(t−z_1 ))^(−1)    by residus theorem    ∫_R f(z)dz =2iπ R(f.z_0 )  =2iπ (t(z_0 −z_1 ))^(−1)   =π t^(−1/2) (t+1)^(−1/2 )     −>∂F/∂t =π 2^(−1)  t^(−1/2) (1+t)^(−1/2)   −>F(t)  =π 2^(−1 ) ∫_0 ^t    x^(−1/2) (1+x)^(−1/2) dx +α  α=F(0)=0 and  F(t) =π2^(−1) ∫_0 ^t  x^(−1/2) (1+x)^(−1/2) dx  and by the changement  x^(1/2) =u   we find    F(t) = π ln( t^(1/2) +(1+t)^(1/2) ) so  ∫_0 ^∞ ln(2+x^2 )(1+x^2 )^(−1) dx=F(1)=πln(1+2^(1/2) )

$${answer}\:{to}\:\mathrm{25955}.{we}\:{introduce}\:{the}\:{parametric}\:{function} \\ $$$${F}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:{ln}\left(\mathrm{1}+\left(\mathrm{1}+{x}^{\mathrm{2}_{} } \right){t}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}\:{after}\:{verifying}\:{that}\: \\ $$$${F}\:{is}\:{derivable}\:{on}\left[\mathrm{0}.\propto\left[\:\:{we}\:{find}\:\:\:\partial{F}/\partial{t}=\:\:\int_{\mathrm{0}} ^{\infty} \left(\:\left(\mathrm{1}+\left(\mathrm{1}+{x}^{\mathrm{2}} \right){t}\right)^{−\mathrm{1}} {dx}\right.\right.\right. \\ $$$$\partial{F}/\partial{t}=\mathrm{1}/\mathrm{2}\:\int_{{R}} \left({tx}^{\mathrm{2}} +{t}+\mathrm{1}\right)^{−\mathrm{1}} {dx}\:\:\:{we}\:{put}\:\:{f}\left({z}\right)\:=\left({tz}^{\mathrm{2}} +{z}+\mathrm{1}\right)^{−\mathrm{1}} \\ $$$${let}\:{find}\:{the}\:{poles}\:{of}\:{f}..{tz}^{\mathrm{2}} +{z}+\mathrm{1}=\mathrm{0}\:<−>\:\:{z}=+−{i}\left(\left({t}+\mathrm{1}\right){t}^{−\mathrm{1}} \right)^{\mathrm{1}/\mathrm{2}} \\ $$$${and}\:{the}\:{poles}\:{are}\:\:{z}_{\mathrm{0}} ={i}\left(\left({t}+\mathrm{1}\right){t}^{−\mathrm{1}} \right)^{\mathrm{1}/\mathrm{2}} \:\:{and}\:\:\:{z}_{\mathrm{1}} =−{i}\left(\left({t}+\mathrm{1}\right){t}^{−\mathrm{1}} \right)^{\mathrm{1}/\mathrm{2}} \\ $$$${and}\:\:{f}\left({t}\right)\:\:=\left({t}\left({t}−{z}_{\mathrm{0}} \right)\left({t}−{z}_{\mathrm{1}} \right)\right)^{−\mathrm{1}} \:\:\:{by}\:{residus}\:{theorem} \\ $$$$ \\ $$$$\int_{{R}} {f}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{R}\left({f}.{z}_{\mathrm{0}} \right)\:\:=\mathrm{2}{i}\pi\:\left({t}\left({z}_{\mathrm{0}} −{z}_{\mathrm{1}} \right)\right)^{−\mathrm{1}} \\ $$$$=\pi\:{t}^{−\mathrm{1}/\mathrm{2}} \left({t}+\mathrm{1}\right)^{−\mathrm{1}/\mathrm{2}\:} \:\:\:\:−>\partial{F}/\partial{t}\:=\pi\:\mathrm{2}^{−\mathrm{1}} \:{t}^{−\mathrm{1}/\mathrm{2}} \left(\mathrm{1}+{t}\right)^{−\mathrm{1}/\mathrm{2}} \\ $$$$−>{F}\left({t}\right)\:\:=\pi\:\mathrm{2}^{−\mathrm{1}\:} \int_{\mathrm{0}} ^{{t}} \:\:\:{x}^{−\mathrm{1}/\mathrm{2}} \left(\mathrm{1}+{x}\right)^{−\mathrm{1}/\mathrm{2}} {dx}\:+\alpha \\ $$$$\alpha={F}\left(\mathrm{0}\right)=\mathrm{0}\:{and}\:\:{F}\left({t}\right)\:=\pi\mathrm{2}^{−\mathrm{1}} \int_{\mathrm{0}} ^{{t}} \:{x}^{−\mathrm{1}/\mathrm{2}} \left(\mathrm{1}+{x}\right)^{−\mathrm{1}/\mathrm{2}} {dx} \\ $$$${and}\:{by}\:{the}\:{changement}\:\:{x}^{\mathrm{1}/\mathrm{2}} ={u}\:\:\:{we}\:{find} \\ $$$$ \\ $$$${F}\left({t}\right)\:=\:\pi\:{ln}\left(\:{t}^{\mathrm{1}/\mathrm{2}} +\left(\mathrm{1}+{t}\right)^{\mathrm{1}/\mathrm{2}} \right)\:{so}\:\:\int_{\mathrm{0}} ^{\infty} {ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}={F}\left(\mathrm{1}\right)=\pi{ln}\left(\mathrm{1}+\mathrm{2}^{\mathrm{1}/\mathrm{2}} \right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com