Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 26020 by abdo imad last updated on 17/Dec/17

answer to 25962...we S=Σ_(n=1) ^∝  1/_(n^2 (n+1))  and S_n = Σ_(k=1) ^(k=n)  1/_(k^2 (k+1))   we have S= lim_(n−>∝)  S_n  we decompose the the rational fraction  F(X)=   1/_X 2_((X^2 +1)) ....F(X)=  a/X  +b/X^2   + c/X+1  we find a=−1..b=1..c=1  and  F(X)=  −1/X + 1/X+1+1/X^2   Σ_(k=1) ^(k=n)  1/_(k^2 (k+1)) =   −Σ_(k=1) ^(k=n)  1/k  + Σ_(k=1) ^(k=n)  1/_(k+1)  + Σ_(k=1) ^(k=n)  1/_k^2    but  Σ_(k=1) ^(k=n)   1/k  = H_n   Σ_(k=1) ^(k=n)  1/_(k+1) =  Σ_(k=2) ^(k=n+1)  1/k = H_(n+1) −1  −> S_n = H_(n+1) −H_n −1 + Σ_(k=1) ^(k=n)  1/_k^2    but  H_n  =ln(n)+s+o_1 (1/n)...H_(n+1) = ln(n+1) +s +o_2 (1/n)  −> H_(n+1)  − H_n =ln((n+1)n^(−1) )  + o_3 (1/n)  but lim _(n−>∝) o_3 (1/n)=0  so   lim  H_(n+1) − H_n =0  lim_   Σ_(k=1) ^(k=n)   1/_k^2    = Σ_(k=1) ^∝  1/_k^2    =π^2 /6  finally...  Σ_(n=1) ^(n=∝)   1/_(n^2 (n+1))   = π^2 /6 −1.

$${answer}\:{to}\:\mathrm{25962}...{we}\:{S}=\sum_{{n}=\mathrm{1}} ^{\propto} \:\mathrm{1}/_{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)} \:{and}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)} \\ $$ $${we}\:{have}\:{S}=\:{lim}_{{n}−>\propto} \:{S}_{{n}} \:{we}\:{decompose}\:{the}\:{the}\:{rational}\:{fraction} \\ $$ $${F}\left({X}\right)=\:\:\:\mathrm{1}/_{{X}} \mathrm{2}_{\left({X}^{\mathrm{2}} +\mathrm{1}\right)} ....{F}\left({X}\right)=\:\:{a}/{X}\:\:+{b}/{X}^{\mathrm{2}} \:\:+\:{c}/{X}+\mathrm{1} \\ $$ $${we}\:{find}\:{a}=−\mathrm{1}..{b}=\mathrm{1}..{c}=\mathrm{1}\:\:{and}\:\:{F}\left({X}\right)=\:\:−\mathrm{1}/{X}\:+\:\mathrm{1}/{X}+\mathrm{1}+\mathrm{1}/{X}^{\mathrm{2}} \\ $$ $$\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)} =\:\:\:−\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/{k}\:\:+\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}+\mathrm{1}} \:+\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}^{\mathrm{2}} } \\ $$ $${but}\:\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\mathrm{1}/{k}\:\:=\:{H}_{{n}} \\ $$ $$\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}+\mathrm{1}} =\:\:\sum_{{k}=\mathrm{2}} ^{{k}={n}+\mathrm{1}} \:\mathrm{1}/{k}\:=\:{H}_{{n}+\mathrm{1}} −\mathrm{1} \\ $$ $$−>\:{S}_{{n}} =\:{H}_{{n}+\mathrm{1}} −{H}_{{n}} −\mathrm{1}\:+\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\mathrm{1}/_{{k}^{\mathrm{2}} } \\ $$ $${but}\:\:{H}_{{n}} \:={ln}\left({n}\right)+{s}+{o}_{\mathrm{1}} \left(\mathrm{1}/{n}\right)...{H}_{{n}+\mathrm{1}} =\:{ln}\left({n}+\mathrm{1}\right)\:+{s}\:+{o}_{\mathrm{2}} \left(\mathrm{1}/{n}\right) \\ $$ $$−>\:{H}_{{n}+\mathrm{1}} \:−\:{H}_{{n}} ={ln}\left(\left({n}+\mathrm{1}\right){n}^{−\mathrm{1}} \right)\:\:+\:{o}_{\mathrm{3}} \left(\mathrm{1}/{n}\right) \\ $$ $${but}\:{lim}\:_{{n}−>\propto} {o}_{\mathrm{3}} \left(\mathrm{1}/{n}\right)=\mathrm{0}\:\:{so}\:\:\:{lim}\:\:{H}_{{n}+\mathrm{1}} −\:{H}_{{n}} =\mathrm{0} \\ $$ $${lim}_{} \:\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\mathrm{1}/_{{k}^{\mathrm{2}} } \:\:=\:\sum_{{k}=\mathrm{1}} ^{\propto} \:\mathrm{1}/_{{k}^{\mathrm{2}} } \:\:=\pi^{\mathrm{2}} /\mathrm{6}\:\:{finally}... \\ $$ $$\sum_{{n}=\mathrm{1}} ^{{n}=\propto} \:\:\mathrm{1}/_{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)} \:\:=\:\pi^{\mathrm{2}} /\mathrm{6}\:−\mathrm{1}. \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com