Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 26021 by ajfour last updated on 17/Dec/17

Commented by ajfour last updated on 17/Dec/17

If a ray of light from P(a,b) has  to return back to P upon two   reflections, from parabola y=x^2 ,  say at points B and C. Then find  coordinates of B and C in terms  of a and b.

$${If}\:{a}\:{ray}\:{of}\:{light}\:{from}\:{P}\left({a},{b}\right)\:{has} \\ $$$${to}\:{return}\:{back}\:{to}\:{P}\:{upon}\:{two}\: \\ $$$${reflections},\:{from}\:{parabola}\:{y}={x}^{\mathrm{2}} , \\ $$$${say}\:{at}\:{points}\:{B}\:{and}\:{C}.\:{Then}\:{find} \\ $$$${coordinates}\:{of}\:{B}\:{and}\:{C}\:{in}\:{terms} \\ $$$${of}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}. \\ $$

Answered by mrW1 last updated on 17/Dec/17

Commented by mrW1 last updated on 18/Dec/17

y=f(x)=x^2   f′(x)=2x  T_1  and T_2 =tangent line at A and B  P_1 (x_1 ,y_1 )=mirror image of P on T_1   P_2 (x_2 ,y_2 )=mirror image of P on T_2   P_1 , A, B and P_2  must collinear.  A(x_A ,y_A ) with y_A =x_A ^2   B(x_B ,y_B ) with y_B =x_B ^2   Eqn. of T_1 :  ((y−y_A )/(x−x_A ))=f′(x_A )=2x_A   ⇒−2x_A x+y+x_A ^2 =0  Eqn. of T_2 :  ⇒−2x_B x+y+x_B ^2 =0    PP_1 : (x,y)=(a,b)+λ(−2x_A ,1)  −2x_A (a−2x_A λ)+(b+λ)+x_A ^2 =0  ⇒λ=((2ax_A −x_A ^2 −b)/(1+4x_A ^2 ))=((a^2 −b−(a−x_A )^2 )/(1+4x_A ^2 ))  ⇒x_1 =a+2λ(−2x_A )=a−4x_A ×((a^2 −b−(a−x_A )^2 )/(1+4x_A ^2 ))  ⇒y_1 =b+2λ=b+2×((a^2 −b−(a−x_A )^2 )/(1+4x_A ^2 ))  similarily:  ⇒x_2 =a−4x_B ×((a^2 −b−(a−x_B )^2 )/(1+4x_B ^2 ))  ⇒y_2 =b+2×((a^2 −b−(a−x_B )^2 )/(1+4x_B ^2 ))    P_1 ,A,B are collinear:  ((y_1 −y_A )/(x_1 −x_A ))=((y_A −y_B )/(x_A −x_B ))=((x_A ^2 −x_B ^2 )/(x_A −x_B ))=x_A +x_B   ⇒y_1 −y_A =(x_A +x_B )(x_1 −x_A )  b+2×((a^2 −b−(a−x_A )^2 )/(1+4x_A ^2 ))−y_A =(x_A +x_B )(a−4x_A ×((a^2 −b−(a−x_A )^2 )/(1+4x_A ^2 ))−x_A )  (b−y_A )(1+4x_A ^2 )+2[(a^2 −b)−(a−x_A )^2 ]=(x_A +x_B ){(a−x_A )(1+4x_A ^2 )−4x_A [(a^2 −b)−(a−x_A )^2 ]}  ⇒(b−x_A ^2 )(1+4x_A ^2 )+2[(a^2 −b)−(a−x_A )^2 ]=(x_A +x_B ){(a−x_A )(1+4x_A ^2 )−4x_A [(a^2 −b)−(a−x_A )^2 ]}   ...(i)  similarily:  ⇒(b−x_B ^2 )(1+4x_B ^2 )+2[(a^2 −b)−(a−x_B )^2 ]=(x_B +x_A ){(a−x_B )(1+4x_B ^2 )−4x_B [(a^2 −b)−(a−x_B )^2 ]}   ...(ii)    ⇒(((b−x_A ^2 )(1+4x_A ^2 )+2[(a^2 −b)−(a−x_A )^2 ])/((b−x_B ^2 )(1+4x_B ^2 )+2[(a^2 −b)−(a−x_B )^2 ]))=(((a−x_A )(1+4x_A ^2 )−4x_A [(a^2 −b)−(a−x_A )^2 ])/((a−x_B )(1+4x_B ^2 )−4x_B [(a^2 −b)−(a−x_B )^2 ]))  .....

$${y}={f}\left({x}\right)={x}^{\mathrm{2}} \\ $$$${f}'\left({x}\right)=\mathrm{2}{x} \\ $$$${T}_{\mathrm{1}} \:{and}\:{T}_{\mathrm{2}} ={tangent}\:{line}\:{at}\:{A}\:{and}\:{B} \\ $$$${P}_{\mathrm{1}} \left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)={mirror}\:{image}\:{of}\:{P}\:{on}\:{T}_{\mathrm{1}} \\ $$$${P}_{\mathrm{2}} \left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} \right)={mirror}\:{image}\:{of}\:{P}\:{on}\:{T}_{\mathrm{2}} \\ $$$${P}_{\mathrm{1}} ,\:{A},\:{B}\:{and}\:{P}_{\mathrm{2}} \:{must}\:{collinear}. \\ $$$${A}\left({x}_{{A}} ,{y}_{{A}} \right)\:{with}\:{y}_{{A}} ={x}_{{A}} ^{\mathrm{2}} \\ $$$${B}\left({x}_{{B}} ,{y}_{{B}} \right)\:{with}\:{y}_{{B}} ={x}_{{B}} ^{\mathrm{2}} \\ $$$${Eqn}.\:{of}\:{T}_{\mathrm{1}} : \\ $$$$\frac{{y}−{y}_{{A}} }{{x}−{x}_{{A}} }={f}'\left({x}_{{A}} \right)=\mathrm{2}{x}_{{A}} \\ $$$$\Rightarrow−\mathrm{2}{x}_{{A}} {x}+{y}+{x}_{{A}} ^{\mathrm{2}} =\mathrm{0} \\ $$$${Eqn}.\:{of}\:{T}_{\mathrm{2}} : \\ $$$$\Rightarrow−\mathrm{2}{x}_{{B}} {x}+{y}+{x}_{{B}} ^{\mathrm{2}} =\mathrm{0} \\ $$$$ \\ $$$${PP}_{\mathrm{1}} :\:\left({x},{y}\right)=\left({a},{b}\right)+\lambda\left(−\mathrm{2}{x}_{{A}} ,\mathrm{1}\right) \\ $$$$−\mathrm{2}{x}_{{A}} \left({a}−\mathrm{2}{x}_{{A}} \lambda\right)+\left({b}+\lambda\right)+{x}_{{A}} ^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{2}{ax}_{{A}} −{x}_{{A}} ^{\mathrm{2}} −{b}}{\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} }=\frac{{a}^{\mathrm{2}} −{b}−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} } \\ $$$$\Rightarrow{x}_{\mathrm{1}} ={a}+\mathrm{2}\lambda\left(−\mathrm{2}{x}_{{A}} \right)={a}−\mathrm{4}{x}_{{A}} ×\frac{{a}^{\mathrm{2}} −{b}−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} } \\ $$$$\Rightarrow{y}_{\mathrm{1}} ={b}+\mathrm{2}\lambda={b}+\mathrm{2}×\frac{{a}^{\mathrm{2}} −{b}−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} } \\ $$$${similarily}: \\ $$$$\Rightarrow{x}_{\mathrm{2}} ={a}−\mathrm{4}{x}_{{B}} ×\frac{{a}^{\mathrm{2}} −{b}−\left({a}−{x}_{{B}} \right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{x}_{{B}} ^{\mathrm{2}} } \\ $$$$\Rightarrow{y}_{\mathrm{2}} ={b}+\mathrm{2}×\frac{{a}^{\mathrm{2}} −{b}−\left({a}−{x}_{{B}} \right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{x}_{{B}} ^{\mathrm{2}} } \\ $$$$ \\ $$$${P}_{\mathrm{1}} ,{A},{B}\:{are}\:{collinear}: \\ $$$$\frac{{y}_{\mathrm{1}} −{y}_{{A}} }{{x}_{\mathrm{1}} −{x}_{{A}} }=\frac{{y}_{{A}} −{y}_{{B}} }{{x}_{{A}} −{x}_{{B}} }=\frac{{x}_{{A}} ^{\mathrm{2}} −{x}_{{B}} ^{\mathrm{2}} }{{x}_{{A}} −{x}_{{B}} }={x}_{{A}} +{x}_{{B}} \\ $$$$\Rightarrow{y}_{\mathrm{1}} −{y}_{{A}} =\left({x}_{{A}} +{x}_{{B}} \right)\left({x}_{\mathrm{1}} −{x}_{{A}} \right) \\ $$$${b}+\mathrm{2}×\frac{{a}^{\mathrm{2}} −{b}−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} }−{y}_{{A}} =\left({x}_{{A}} +{x}_{{B}} \right)\left({a}−\mathrm{4}{x}_{{A}} ×\frac{{a}^{\mathrm{2}} −{b}−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} }−{x}_{{A}} \right) \\ $$$$\left({b}−{y}_{{A}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} \right)+\mathrm{2}\left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} \right]=\left({x}_{{A}} +{x}_{{B}} \right)\left\{\left({a}−{x}_{{A}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} \right)−\mathrm{4}{x}_{{A}} \left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} \right]\right\} \\ $$$$\Rightarrow\left({b}−{x}_{{A}} ^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} \right)+\mathrm{2}\left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} \right]=\left({x}_{{A}} +{x}_{{B}} \right)\left\{\left({a}−{x}_{{A}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} \right)−\mathrm{4}{x}_{{A}} \left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} \right]\right\}\:\:\:...\left({i}\right) \\ $$$${similarily}: \\ $$$$\Rightarrow\left({b}−{x}_{{B}} ^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{B}} ^{\mathrm{2}} \right)+\mathrm{2}\left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{B}} \right)^{\mathrm{2}} \right]=\left({x}_{{B}} +{x}_{{A}} \right)\left\{\left({a}−{x}_{{B}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{B}} ^{\mathrm{2}} \right)−\mathrm{4}{x}_{{B}} \left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{B}} \right)^{\mathrm{2}} \right]\right\}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$$\Rightarrow\frac{\left({b}−{x}_{{A}} ^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} \right)+\mathrm{2}\left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} \right]}{\left({b}−{x}_{{B}} ^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{B}} ^{\mathrm{2}} \right)+\mathrm{2}\left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{B}} \right)^{\mathrm{2}} \right]}=\frac{\left({a}−{x}_{{A}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} \right)−\mathrm{4}{x}_{{A}} \left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} \right]}{\left({a}−{x}_{{B}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{B}} ^{\mathrm{2}} \right)−\mathrm{4}{x}_{{B}} \left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{B}} \right)^{\mathrm{2}} \right]} \\ $$$$..... \\ $$

Commented by ajfour last updated on 18/Dec/17

thank you sir ..let me also try..  in fact i have attempted but   posting is due. degree four eqn.  i think!

$${thank}\:{you}\:{sir}\:..{let}\:{me}\:{also}\:{try}.. \\ $$$${in}\:{fact}\:{i}\:{have}\:{attempted}\:{but}\: \\ $$$${posting}\:{is}\:{due}.\:{degree}\:{four}\:{eqn}. \\ $$$${i}\:{think}! \\ $$

Commented by mrW1 last updated on 18/Dec/17

Hm, it′s not easy to solve...

$${Hm},\:{it}'{s}\:{not}\:{easy}\:{to}\:{solve}... \\ $$

Commented by ajfour last updated on 19/Dec/17

i got:  ((b−x_B ^2 )/(a−x_B ))=((x_B [3+4x_B (x_A +x_B )]−x_A )/(1+4x_A x_B ))   and the similar eq. with x_A    interchanged with x_B .  what value of x_B  can your   expeession yield Sir, if a=0  and x_B =−x_A  ?

$${i}\:{got}: \\ $$$$\frac{{b}−{x}_{{B}} ^{\mathrm{2}} }{{a}−{x}_{{B}} }=\frac{{x}_{{B}} \left[\mathrm{3}+\mathrm{4}{x}_{{B}} \left({x}_{{A}} +{x}_{{B}} \right)\right]−{x}_{{A}} }{\mathrm{1}+\mathrm{4}{x}_{{A}} {x}_{{B}} } \\ $$$$\:{and}\:{the}\:{similar}\:{eq}.\:{with}\:{x}_{{A}} \: \\ $$$${interchanged}\:{with}\:{x}_{{B}} . \\ $$$${what}\:{value}\:{of}\:{x}_{{B}} \:{can}\:{your}\: \\ $$$${expeession}\:{yield}\:{Sir},\:{if}\:{a}=\mathrm{0} \\ $$$${and}\:{x}_{{B}} =−{x}_{{A}} \:? \\ $$

Commented by mrW1 last updated on 19/Dec/17

(b−x_A ^2 )(1+4x_A ^2 )+2[(a^2 −b)−(a−x_A )^2 ]=(x_A +x_B ){(a−x_A )(1+4x_A ^2 )−4x_A [(a^2 −b)−(a−x_A )^2 ]}   ...(i)  with a=0 and x_A =−x_B  we get  (b−x_B ^2 )(1+4x_B ^2 )+2(−b−x_B ^2 )=0  b−x_B ^2 +4bx_B ^2 −4x_B ^4 −2b−2x_B ^2 =0  4x_B ^4 −(4b−3)x_B ^2 +b=0  ⇒x_B ^2 =((4b−3±(√((4b−3)^2 −16b)))/8)  ⇒x_B ^2 =((4b−3±(√((4b−1)(4b−9))))/8)  ⇒b≥(9/4)

$$\left({b}−{x}_{{A}} ^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} \right)+\mathrm{2}\left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} \right]=\left({x}_{{A}} +{x}_{{B}} \right)\left\{\left({a}−{x}_{{A}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{A}} ^{\mathrm{2}} \right)−\mathrm{4}{x}_{{A}} \left[\left({a}^{\mathrm{2}} −{b}\right)−\left({a}−{x}_{{A}} \right)^{\mathrm{2}} \right]\right\}\:\:\:...\left({i}\right) \\ $$$${with}\:{a}=\mathrm{0}\:{and}\:{x}_{{A}} =−{x}_{{B}} \:{we}\:{get} \\ $$$$\left({b}−{x}_{{B}} ^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{4}{x}_{{B}} ^{\mathrm{2}} \right)+\mathrm{2}\left(−{b}−{x}_{{B}} ^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${b}−{x}_{{B}} ^{\mathrm{2}} +\mathrm{4}{bx}_{{B}} ^{\mathrm{2}} −\mathrm{4}{x}_{{B}} ^{\mathrm{4}} −\mathrm{2}{b}−\mathrm{2}{x}_{{B}} ^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}{x}_{{B}} ^{\mathrm{4}} −\left(\mathrm{4}{b}−\mathrm{3}\right){x}_{{B}} ^{\mathrm{2}} +{b}=\mathrm{0} \\ $$$$\Rightarrow{x}_{{B}} ^{\mathrm{2}} =\frac{\mathrm{4}{b}−\mathrm{3}\pm\sqrt{\left(\mathrm{4}{b}−\mathrm{3}\right)^{\mathrm{2}} −\mathrm{16}{b}}}{\mathrm{8}} \\ $$$$\Rightarrow{x}_{{B}} ^{\mathrm{2}} =\frac{\mathrm{4}{b}−\mathrm{3}\pm\sqrt{\left(\mathrm{4}{b}−\mathrm{1}\right)\left(\mathrm{4}{b}−\mathrm{9}\right)}}{\mathrm{8}} \\ $$$$\Rightarrow{b}\geqslant\frac{\mathrm{9}}{\mathrm{4}} \\ $$

Commented by mrW1 last updated on 19/Dec/17

I think you also get  4x_B ^4 −(4b−3)x_B ^2 +b=0

$${I}\:{think}\:{you}\:{also}\:{get} \\ $$$$\mathrm{4}{x}_{{B}} ^{\mathrm{4}} −\left(\mathrm{4}{b}−\mathrm{3}\right){x}_{{B}} ^{\mathrm{2}} +{b}=\mathrm{0} \\ $$

Commented by ajfour last updated on 19/Dec/17

yes sir! thanks for checking.

$${yes}\:{sir}!\:{thanks}\:{for}\:{checking}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com