Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 26047 by ajfour last updated on 18/Dec/17

Commented by ajfour last updated on 18/Dec/17

Initially a chain lies on a  frictionless table top with length  h hanging such that end B touches  the ground. If released, with what  speed does end A slip of the table  corner? (Assume chain remains   in three sections-a horizontal  section on table, a vertical section  by the vertical side of table, and  a section as heap deposited on  ground in between initial to  final situation).

$${Initially}\:{a}\:{chain}\:{lies}\:{on}\:{a} \\ $$$${frictionless}\:{table}\:{top}\:{with}\:{length} \\ $$$$\boldsymbol{{h}}\:{hanging}\:{such}\:{that}\:{end}\:{B}\:{touches} \\ $$$${the}\:{ground}.\:{If}\:{released},\:{with}\:{what} \\ $$$${speed}\:{does}\:{end}\:{A}\:{slip}\:{of}\:{the}\:{table} \\ $$$${corner}?\:\left({Assume}\:{chain}\:{remains}\right. \\ $$$$\:{in}\:{three}\:{sections}-{a}\:{horizontal} \\ $$$${section}\:{on}\:{table},\:{a}\:{vertical}\:{section} \\ $$$${by}\:{the}\:{vertical}\:{side}\:{of}\:{table},\:{and} \\ $$$${a}\:{section}\:{as}\:{heap}\:{deposited}\:{on} \\ $$$${ground}\:{in}\:{between}\:{initial}\:{to} \\ $$$$\left.{final}\:{situation}\right). \\ $$

Commented by ajfour last updated on 19/Dec/17

your answer matches with that  in textbook. But i arrive at a  different answer using system  of variable mass equation..      ((mdv)/dt)= F_(ext) +v_(rel) (dm/dt) .

$${your}\:{answer}\:{matches}\:{with}\:{that} \\ $$$${in}\:{textbook}.\:{But}\:{i}\:{arrive}\:{at}\:{a} \\ $$$${different}\:{answer}\:{using}\:{system} \\ $$$${of}\:{variable}\:{mass}\:{equation}.. \\ $$$$\:\:\:\:\frac{{mdv}}{{dt}}=\:{F}_{{ext}} +{v}_{{rel}} \frac{{dm}}{{dt}}\:. \\ $$

Commented by mrW1 last updated on 19/Dec/17

Can you post your solution please?  I am not familiar with motion of  variable mass.

$${Can}\:{you}\:{post}\:{your}\:{solution}\:{please}? \\ $$$${I}\:{am}\:{not}\:{familiar}\:{with}\:{motion}\:{of} \\ $$$${variable}\:{mass}. \\ $$

Commented by ajfour last updated on 19/Dec/17

Commented by ajfour last updated on 19/Dec/17

For the system in blue boundary:  mass = m_B =((m_0 h)/l)  =constant  (as much mass goes in comes out)  so simply   ((m_0 gh)/l)−T=(((m_0 h)/l))a   ..(i)  For system in red boundary  mass is variable (the mass that  leaves the blue boundary system  = mass that leaves the red  boundary system at zero relative  velocity to the system mass)  And  m_R =((m_0 (l−h−x))/l)   so the term  v_(rel) (dm_R /dt) =0  as  v_(rel) =0  because  it should be noted that the leaving  mass arrives to zero speed by  impact of ground only after it  leaves the blue boundary at speed  v (the velocity of moving part of  chain).  so for mass m_R :       T=((m_0 (l−h−x)a)/l)  adding eq. (i) to this gives  ((m_0 gh)/l)=((m_0 (l−x)a)/l)  or  a=((vdv)/dx)=((gh)/(l−x))  ⇒    ∫_0 ^(  v) vdv =gh∫_0 ^(  l−h) (dx/(l−x))  ⇒    (v^2 /2)= ghln [(l/(l−(l−h)))]  ⇒   v^2 =2ghln (l/h) ,  or         v=(√(2ghln ((l/h))))  .

$${For}\:{the}\:{system}\:{in}\:{blue}\:{boundary}: \\ $$$${mass}\:=\:{m}_{{B}} =\frac{{m}_{\mathrm{0}} \boldsymbol{{h}}}{\boldsymbol{{l}}}\:\:={constant} \\ $$$$\left({as}\:{much}\:{mass}\:{goes}\:{in}\:{comes}\:{out}\right) \\ $$$${so}\:{simply}\:\:\:\frac{{m}_{\mathrm{0}} {gh}}{{l}}−{T}=\left(\frac{{m}_{\mathrm{0}} {h}}{{l}}\right){a}\:\:\:..\left({i}\right) \\ $$$${For}\:{system}\:{in}\:{red}\:{boundary} \\ $$$${mass}\:{is}\:{variable}\:\left({the}\:{mass}\:{that}\right. \\ $$$${leaves}\:{the}\:{blue}\:{boundary}\:{system} \\ $$$$=\:{mass}\:{that}\:{leaves}\:{the}\:{red} \\ $$$${boundary}\:{system}\:{at}\:{zero}\:{relative} \\ $$$$\left.{velocity}\:{to}\:{the}\:{system}\:{mass}\right) \\ $$$${And}\:\:{m}_{{R}} =\frac{{m}_{\mathrm{0}} \left({l}−{h}−{x}\right)}{{l}} \\ $$$$\:{so}\:{the}\:{term}\:\:{v}_{{rel}} \frac{{dm}_{{R}} }{{dt}}\:=\mathrm{0}\:\:{as} \\ $$$${v}_{{rel}} =\mathrm{0}\:\:{because} \\ $$$${it}\:{should}\:{be}\:{noted}\:{that}\:{the}\:{leaving} \\ $$$${mass}\:{arrives}\:{to}\:{zero}\:{speed}\:{by} \\ $$$${impact}\:{of}\:{ground}\:{only}\:{after}\:{it} \\ $$$${leaves}\:{the}\:{blue}\:{boundary}\:{at}\:{speed} \\ $$$${v}\:\left({the}\:{velocity}\:{of}\:{moving}\:{part}\:{of}\right. \\ $$$$\left.{chain}\right). \\ $$$${so}\:{for}\:{mass}\:{m}_{{R}} : \\ $$$$\:\:\:\:\:{T}=\frac{{m}_{\mathrm{0}} \left({l}−{h}−{x}\right){a}}{{l}} \\ $$$${adding}\:{eq}.\:\left({i}\right)\:{to}\:{this}\:{gives} \\ $$$$\frac{{m}_{\mathrm{0}} {gh}}{{l}}=\frac{{m}_{\mathrm{0}} \left({l}−{x}\right){a}}{{l}} \\ $$$${or}\:\:{a}=\frac{{vdv}}{{dx}}=\frac{{gh}}{{l}−{x}} \\ $$$$\Rightarrow\:\:\:\:\int_{\mathrm{0}} ^{\:\:{v}} {vdv}\:={gh}\int_{\mathrm{0}} ^{\:\:{l}−{h}} \frac{{dx}}{{l}−{x}} \\ $$$$\Rightarrow\:\:\:\:\frac{{v}^{\mathrm{2}} }{\mathrm{2}}=\:{gh}\mathrm{ln}\:\left[\frac{{l}}{{l}−\left({l}−{h}\right)}\right] \\ $$$$\Rightarrow\:\:\:{v}^{\mathrm{2}} =\mathrm{2}{gh}\mathrm{ln}\:\frac{{l}}{{h}}\:,\:\:{or} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{v}}=\sqrt{\mathrm{2}\boldsymbol{{gh}}\mathrm{ln}\:\left(\frac{\boldsymbol{{l}}}{\boldsymbol{{h}}}\right)}\:\:. \\ $$

Commented by ajfour last updated on 19/Dec/17

sorry sir, i was mistaken; as i  consider two boundaries, i arrive  at the same answer.  v_(rel) =0 ; so the eq. is same as  without variable mass.

$${sorry}\:{sir},\:{i}\:{was}\:{mistaken};\:{as}\:{i} \\ $$$${consider}\:{two}\:{boundaries},\:{i}\:{arrive} \\ $$$${at}\:{the}\:{same}\:{answer}. \\ $$$${v}_{{rel}} =\mathrm{0}\:;\:{so}\:{the}\:{eq}.\:{is}\:{same}\:{as} \\ $$$${without}\:{variable}\:{mass}. \\ $$

Answered by mrW1 last updated on 18/Dec/17

when a length of x lies on the ground,  ρhg=(l−x)ρa  ⇒a=((hg)/(l−x))=v(dv/dx)  ⇒vdv=hg×(dx/(l−x))  ⇒∫_0 ^v vdv=hg×∫_0 ^x (dx/(l−x))  ⇒(v^2 /2)=hg[ln (l−x)]_x ^0 =hgln (l/(l−x))  ⇒v=(√(2hgln (l/(l−x))))  at x=l−h:  ⇒v_1 =(√(2hgln (l/h)))

$${when}\:{a}\:{length}\:{of}\:{x}\:{lies}\:{on}\:{the}\:{ground}, \\ $$$$\rho{hg}=\left({l}−{x}\right)\rho{a} \\ $$$$\Rightarrow{a}=\frac{{hg}}{{l}−{x}}={v}\frac{{dv}}{{dx}} \\ $$$$\Rightarrow{vdv}={hg}×\frac{{dx}}{{l}−{x}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{{v}} {vdv}={hg}×\int_{\mathrm{0}} ^{{x}} \frac{{dx}}{{l}−{x}} \\ $$$$\Rightarrow\frac{{v}^{\mathrm{2}} }{\mathrm{2}}={hg}\left[\mathrm{ln}\:\left({l}−{x}\right)\right]_{{x}} ^{\mathrm{0}} ={hg}\mathrm{ln}\:\frac{{l}}{{l}−{x}} \\ $$$$\Rightarrow{v}=\sqrt{\mathrm{2}{hg}\mathrm{ln}\:\frac{{l}}{{l}−{x}}} \\ $$$${at}\:{x}={l}−{h}: \\ $$$$\Rightarrow{v}_{\mathrm{1}} =\sqrt{\mathrm{2}{hg}\mathrm{ln}\:\frac{{l}}{{h}}} \\ $$

Answered by mrW1 last updated on 18/Dec/17

With friction between chain and table:  ρhg−μ(l−x−h)ρg=ρ(l−x)a  (1+μ)h−μ(l−x)=(l−x)(a/g)  a=(((1+μ)h−μ(l−x))/(l−x))×g=v(dv/dx)  ((vdv)/g)=[(((1+μ)h)/(l−x))−μ]dx  (v^2 /(2g))=(1+μ)hln (l/(l−x))−μx  ⇒v=(√(2g[(1+μ)hln (l/(l−x))−μx]))  ⇒v_1 =(√(2g[(1+μ)hln (l/h)−μ(l−h)]))

$${With}\:{friction}\:{between}\:{chain}\:{and}\:{table}: \\ $$$$\rho{hg}−\mu\left({l}−{x}−{h}\right)\rho{g}=\rho\left({l}−{x}\right){a} \\ $$$$\left(\mathrm{1}+\mu\right){h}−\mu\left({l}−{x}\right)=\left({l}−{x}\right)\frac{{a}}{{g}} \\ $$$${a}=\frac{\left(\mathrm{1}+\mu\right){h}−\mu\left({l}−{x}\right)}{{l}−{x}}×{g}={v}\frac{{dv}}{{dx}} \\ $$$$\frac{{vdv}}{{g}}=\left[\frac{\left(\mathrm{1}+\mu\right){h}}{{l}−{x}}−\mu\right]{dx} \\ $$$$\frac{{v}^{\mathrm{2}} }{\mathrm{2}{g}}=\left(\mathrm{1}+\mu\right){h}\mathrm{ln}\:\frac{{l}}{{l}−{x}}−\mu{x} \\ $$$$\Rightarrow{v}=\sqrt{\mathrm{2}{g}\left[\left(\mathrm{1}+\mu\right){h}\mathrm{ln}\:\frac{{l}}{{l}−{x}}−\mu{x}\right]} \\ $$$$\Rightarrow{v}_{\mathrm{1}} =\sqrt{\mathrm{2}{g}\left[\left(\mathrm{1}+\mu\right){h}\mathrm{ln}\:\frac{{l}}{{h}}−\mu\left({l}−{h}\right)\right]} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com