Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 26148 by ajfour last updated on 21/Dec/17

Commented by ajfour last updated on 21/Dec/17

mrW1 Sir, question was for you.

$${mrW}\mathrm{1}\:{Sir},\:{question}\:{was}\:{for}\:{you}. \\ $$

Commented by mrW1 last updated on 21/Dec/17

Interesting question! I′ll take a try.

$${Interesting}\:{question}!\:{I}'{ll}\:{take}\:{a}\:{try}. \\ $$

Answered by ajfour last updated on 21/Dec/17

Answered by ajfour last updated on 21/Dec/17

let a and b be roots of equation  ((x−h)/(k−px^2 ))=2px       ⇒  2p^2 x^3 −2pkx+(x−h)=0  where    x=x_(A ) or  x_B    hence   ((2kx)/(2x^3 ))=a+b  , ((x−h)/(2x^3 ))=ab  ⇒ x^2 =(k/(a+b))  and  ((2kx)/(x−h))=((a+b)/(ab)) =c (say)                                                ....(i)  hence    2kx=cx−ch   x=((ch)/(c−2k))   or   x−h=((2hk)/(c−2k))  ....(ii)  and  x^2 = (k/(a+b))=((c^2 h^2 )/((c−2k)^2 ))    ...(iii)  Also  (x−h)^2 +(k−px^2 )^2 =r^2   and    k−px^2 =((x−h)/(2px))  ⇒  (x−h)^2 [1+(1/(4p^2 x^2 ))]=r^2   using  (ii):   ((4h^2 k^2 )/((c−2k)^2 ))[4p^2 x^2 +1]=4r^2 p^2 x^2   ..(iv)  from  (i)    x^2 =(k/(a+b))  , hence  from (iii):   (h^2 /((c−2k)^2 )) =(k/((a+b)c^2 ))  so eq. (iv) becomes  (k^3 /((a+b)c^2 ))[((4p^2 k)/(a+b))+1]=4r^2 p^2 ((k/(a+b)))  ⇒      (k^2 /c^2 )(((4p^2 k)/(a+b))+1)=p^2 r^2   since p=a  and  p=b both satisfy  above equation, so subtracting  above eq. for p=a from that for p=b,         (k^2 /c^2 )(((4k)/(a+b)))(b^2 −a^2 )=r^2 (b^2 −a^2 )  ⇒   k^3 =((c^2 r^2 (a+b))/4)  and as   c=((a+b)/(ab))   [from (i)], so         k=(a+b)((r^2 /(4a^2 b^2 )))^(1/3)   and  from  (iii),         h^2 =((k(c−2k)^2 )/(c^2 (a+b))) .

$${let}\:{a}\:{and}\:{b}\:{be}\:{roots}\:{of}\:{equation} \\ $$$$\frac{{x}−{h}}{{k}−{px}^{\mathrm{2}} }=\mathrm{2}{px}\:\:\:\:\: \\ $$$$\Rightarrow\:\:\mathrm{2}{p}^{\mathrm{2}} {x}^{\mathrm{3}} −\mathrm{2}{pkx}+\left({x}−{h}\right)=\mathrm{0} \\ $$$${where}\:\:\:\:{x}={x}_{{A}\:} {or}\:\:{x}_{{B}} \: \\ $$$${hence}\:\:\:\frac{\mathrm{2}{kx}}{\mathrm{2}{x}^{\mathrm{3}} }={a}+{b}\:\:,\:\frac{{x}−{h}}{\mathrm{2}{x}^{\mathrm{3}} }={ab} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} =\frac{{k}}{{a}+{b}}\:\:{and}\:\:\frac{\mathrm{2}{kx}}{{x}−{h}}=\frac{{a}+{b}}{{ab}}\:={c}\:\left({say}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\left({i}\right) \\ $$$${hence}\:\:\:\:\mathrm{2}{kx}={cx}−{ch} \\ $$$$\:{x}=\frac{{ch}}{{c}−\mathrm{2}{k}}\:\:\:{or}\:\:\:{x}−{h}=\frac{\mathrm{2}{hk}}{{c}−\mathrm{2}{k}}\:\:....\left({ii}\right) \\ $$$${and}\:\:{x}^{\mathrm{2}} =\:\frac{\boldsymbol{{k}}}{\boldsymbol{{a}}+\boldsymbol{{b}}}=\frac{\boldsymbol{{c}}^{\mathrm{2}} \boldsymbol{{h}}^{\mathrm{2}} }{\left(\boldsymbol{{c}}−\mathrm{2}\boldsymbol{{k}}\right)^{\mathrm{2}} }\:\:\:\:...\left({iii}\right) \\ $$$${Also}\:\:\left({x}−{h}\right)^{\mathrm{2}} +\left({k}−{px}^{\mathrm{2}} \right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${and}\:\:\:\:{k}−{px}^{\mathrm{2}} =\frac{{x}−{h}}{\mathrm{2}{px}} \\ $$$$\Rightarrow\:\:\left({x}−{h}\right)^{\mathrm{2}} \left[\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{2}} {x}^{\mathrm{2}} }\right]={r}^{\mathrm{2}} \\ $$$${using}\:\:\left({ii}\right): \\ $$$$\:\frac{\mathrm{4}{h}^{\mathrm{2}} {k}^{\mathrm{2}} }{\left({c}−\mathrm{2}{k}\right)^{\mathrm{2}} }\left[\mathrm{4}{p}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{1}\right]=\mathrm{4}{r}^{\mathrm{2}} {p}^{\mathrm{2}} {x}^{\mathrm{2}} \:\:..\left({iv}\right) \\ $$$${from}\:\:\left({i}\right)\:\:\:\:{x}^{\mathrm{2}} =\frac{{k}}{{a}+{b}}\:\:,\:{hence} \\ $$$${from}\:\left({iii}\right):\:\:\:\frac{{h}^{\mathrm{2}} }{\left({c}−\mathrm{2}{k}\right)^{\mathrm{2}} }\:=\frac{{k}}{\left({a}+{b}\right){c}^{\mathrm{2}} } \\ $$$${so}\:{eq}.\:\left({iv}\right)\:{becomes} \\ $$$$\frac{{k}^{\mathrm{3}} }{\left({a}+{b}\right){c}^{\mathrm{2}} }\left[\frac{\mathrm{4}{p}^{\mathrm{2}} {k}}{{a}+{b}}+\mathrm{1}\right]=\mathrm{4}{r}^{\mathrm{2}} {p}^{\mathrm{2}} \left(\frac{{k}}{{a}+{b}}\right) \\ $$$$\Rightarrow\:\:\:\:\:\:\frac{{k}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\left(\frac{\mathrm{4}{p}^{\mathrm{2}} {k}}{{a}+{b}}+\mathrm{1}\right)={p}^{\mathrm{2}} {r}^{\mathrm{2}} \\ $$$${since}\:{p}={a}\:\:{and}\:\:{p}={b}\:{both}\:{satisfy} \\ $$$${above}\:{equation},\:{so}\:{subtracting} \\ $$$${above}\:{eq}.\:{for}\:{p}={a}\:{from}\:{that}\:{for}\:{p}={b}, \\ $$$$\:\:\:\:\:\:\:\frac{\boldsymbol{{k}}^{\mathrm{2}} }{\boldsymbol{{c}}^{\mathrm{2}} }\left(\frac{\mathrm{4}\boldsymbol{{k}}}{\boldsymbol{{a}}+\boldsymbol{{b}}}\right)\left(\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{a}}^{\mathrm{2}} \right)=\boldsymbol{{r}}^{\mathrm{2}} \left(\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{a}}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:\:\boldsymbol{{k}}^{\mathrm{3}} =\frac{\boldsymbol{{c}}^{\mathrm{2}} \boldsymbol{{r}}^{\mathrm{2}} \left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)}{\mathrm{4}} \\ $$$${and}\:{as}\:\:\:{c}=\frac{{a}+{b}}{{ab}}\:\:\:\left[{from}\:\left({i}\right)\right],\:{so} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{k}}=\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)\left(\frac{\boldsymbol{{r}}^{\mathrm{2}} }{\mathrm{4}\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{b}}^{\mathrm{2}} }\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${and}\:\:{from}\:\:\left({iii}\right), \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{h}}^{\mathrm{2}} =\frac{\boldsymbol{{k}}\left(\boldsymbol{{c}}−\mathrm{2}\boldsymbol{{k}}\right)^{\mathrm{2}} }{\boldsymbol{{c}}^{\mathrm{2}} \left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)}\:. \\ $$

Commented by mrW1 last updated on 22/Dec/17

It can not be made better Sir!

$${It}\:{can}\:{not}\:{be}\:{made}\:{better}\:{Sir}! \\ $$

Commented by ajfour last updated on 22/Dec/17

thank you Sir !

$${thank}\:{you}\:{Sir}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com