Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2619 by Rasheed Soomro last updated on 23/Nov/15

The sums of the first  n   terms of two AP ′s are  in the ratio  3n+31 :  5n−3 . Show that their 9^(th)  terms  are equal.

$${The}\:{sums}\:{of}\:{the}\:{first}\:\:{n}\:\:\:{terms}\:{of}\:{two}\:{AP}\:'{s}\:{are} \\ $$$${in}\:{the}\:{ratio}\:\:\mathrm{3}{n}+\mathrm{31}\::\:\:\mathrm{5}{n}−\mathrm{3}\:.\:{Show}\:{that}\:{their}\:\mathrm{9}^{{th}} \:{terms} \\ $$$${are}\:{equal}. \\ $$

Commented by Yozzi last updated on 24/Nov/15

S_1 (n)=(n/2)(a_1 +l_1 )=((nc_1 )/2), S_2 (n)=(n/2)(a_2 +l_2 )=((nc_2 )/2)  ((S_1 (n))/(S_2 (n)))=((3n+31)/(5n−3))=(c_1 /c_2 ).  3c_2 n+31c_2 =5c_1 n−3c_1   n(3c_2 −5c_1 )=−3c_1 −31c_2   n=((3c_1 +31c_2 )/(5c_1 −3c_2 ))  n−1=((34c_2 −2c_1 )/(5c_1 −3c_2 ))  Δ=T_1 (9)−T_2 (9)=a_1 −a_2 +8(d_1 −d_2 )  l_1 =a_1 +(n−1)d_1 ⇒d_1 =((l_1 −a_1 )/(n−1))  δ=d_1 −d_2 =((l_1 −a_1 −l_2 +a_2 )/(n−1))  δ=(((l_1 +a_2 −a_1 −l_2 )(5c_1 −3c_2 ))/(34c_2 −2c_1 ))

$${S}_{\mathrm{1}} \left({n}\right)=\frac{{n}}{\mathrm{2}}\left({a}_{\mathrm{1}} +{l}_{\mathrm{1}} \right)=\frac{{nc}_{\mathrm{1}} }{\mathrm{2}},\:{S}_{\mathrm{2}} \left({n}\right)=\frac{{n}}{\mathrm{2}}\left({a}_{\mathrm{2}} +{l}_{\mathrm{2}} \right)=\frac{{nc}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{S}_{\mathrm{1}} \left({n}\right)}{{S}_{\mathrm{2}} \left({n}\right)}=\frac{\mathrm{3}{n}+\mathrm{31}}{\mathrm{5}{n}−\mathrm{3}}=\frac{{c}_{\mathrm{1}} }{{c}_{\mathrm{2}} }. \\ $$$$\mathrm{3}{c}_{\mathrm{2}} {n}+\mathrm{31}{c}_{\mathrm{2}} =\mathrm{5}{c}_{\mathrm{1}} {n}−\mathrm{3}{c}_{\mathrm{1}} \\ $$$${n}\left(\mathrm{3}{c}_{\mathrm{2}} −\mathrm{5}{c}_{\mathrm{1}} \right)=−\mathrm{3}{c}_{\mathrm{1}} −\mathrm{31}{c}_{\mathrm{2}} \\ $$$${n}=\frac{\mathrm{3}{c}_{\mathrm{1}} +\mathrm{31}{c}_{\mathrm{2}} }{\mathrm{5}{c}_{\mathrm{1}} −\mathrm{3}{c}_{\mathrm{2}} } \\ $$$${n}−\mathrm{1}=\frac{\mathrm{34}{c}_{\mathrm{2}} −\mathrm{2}{c}_{\mathrm{1}} }{\mathrm{5}{c}_{\mathrm{1}} −\mathrm{3}{c}_{\mathrm{2}} } \\ $$$$\Delta={T}_{\mathrm{1}} \left(\mathrm{9}\right)−{T}_{\mathrm{2}} \left(\mathrm{9}\right)={a}_{\mathrm{1}} −{a}_{\mathrm{2}} +\mathrm{8}\left({d}_{\mathrm{1}} −{d}_{\mathrm{2}} \right) \\ $$$${l}_{\mathrm{1}} ={a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{1}} \Rightarrow{d}_{\mathrm{1}} =\frac{{l}_{\mathrm{1}} −{a}_{\mathrm{1}} }{{n}−\mathrm{1}} \\ $$$$\delta={d}_{\mathrm{1}} −{d}_{\mathrm{2}} =\frac{{l}_{\mathrm{1}} −{a}_{\mathrm{1}} −{l}_{\mathrm{2}} +{a}_{\mathrm{2}} }{{n}−\mathrm{1}} \\ $$$$\delta=\frac{\left({l}_{\mathrm{1}} +{a}_{\mathrm{2}} −{a}_{\mathrm{1}} −{l}_{\mathrm{2}} \right)\left(\mathrm{5}{c}_{\mathrm{1}} −\mathrm{3}{c}_{\mathrm{2}} \right)}{\mathrm{34}{c}_{\mathrm{2}} −\mathrm{2}{c}_{\mathrm{1}} } \\ $$$$ \\ $$$$ \\ $$

Answered by prakash jain last updated on 24/Nov/15

Let  2a_1 +(n−1)d_1 =(3n+31)k_1 , then  2a_2 +(n−1)d_2 =(5n−3)k_1   (2a_1 −d_1 )+nd_1 =3nk_1 +31k_1     ...(1)  If (1) is true for all n (coeffiient must be equal)  nd_1 =3nk_1 ⇒d_1 =3k_1   2a_1 −d_1 =31k_1 ⇒a_1 =17k_1   similarly  d_2 =5k_1   a_2 =k_1   9th term  a_1 +8d_1 =17k_1 +24k_1 =41k_1   a_2 +8d_2 =k_1 +40k_1 =41k_1   So 9th terms are equal.

$$\mathrm{Let}\:\:\mathrm{2}{a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{1}} =\left(\mathrm{3}{n}+\mathrm{31}\right){k}_{\mathrm{1}} ,\:\mathrm{then} \\ $$$$\mathrm{2}{a}_{\mathrm{2}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{2}} =\left(\mathrm{5}{n}−\mathrm{3}\right){k}_{\mathrm{1}} \\ $$$$\left(\mathrm{2}{a}_{\mathrm{1}} −{d}_{\mathrm{1}} \right)+{nd}_{\mathrm{1}} =\mathrm{3}{nk}_{\mathrm{1}} +\mathrm{31}{k}_{\mathrm{1}} \:\:\:\:...\left(\mathrm{1}\right) \\ $$$$\mathrm{If}\:\left(\mathrm{1}\right)\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{all}\:{n}\:\left({coeffiient}\:{must}\:{be}\:{equal}\right) \\ $$$${nd}_{\mathrm{1}} =\mathrm{3}{nk}_{\mathrm{1}} \Rightarrow{d}_{\mathrm{1}} =\mathrm{3}{k}_{\mathrm{1}} \\ $$$$\mathrm{2}{a}_{\mathrm{1}} −{d}_{\mathrm{1}} =\mathrm{31}{k}_{\mathrm{1}} \Rightarrow{a}_{\mathrm{1}} =\mathrm{17}{k}_{\mathrm{1}} \\ $$$$\mathrm{similarly} \\ $$$${d}_{\mathrm{2}} =\mathrm{5}{k}_{\mathrm{1}} \\ $$$${a}_{\mathrm{2}} ={k}_{\mathrm{1}} \\ $$$$\mathrm{9}{th}\:\mathrm{term} \\ $$$${a}_{\mathrm{1}} +\mathrm{8}{d}_{\mathrm{1}} =\mathrm{17}{k}_{\mathrm{1}} +\mathrm{24}{k}_{\mathrm{1}} =\mathrm{41}{k}_{\mathrm{1}} \\ $$$${a}_{\mathrm{2}} +\mathrm{8}{d}_{\mathrm{2}} ={k}_{\mathrm{1}} +\mathrm{40}{k}_{\mathrm{1}} =\mathrm{41}{k}_{\mathrm{1}} \\ $$$$\mathrm{So}\:\mathrm{9}{th}\:\mathrm{terms}\:\mathrm{are}\:\mathrm{equal}. \\ $$

Answered by Rasheed Soomro last updated on 24/Nov/15

Without repeating understood things  (((n/2)[2a_1 +(n−1)d_1 ])/((n/2)[2a_2 +(n−1)d_2 ]))=((3n+31)/(5n−3))    [Given]  a_1 +8d_(1 ) (T_9 )=a_2 +8d_2 (t_9 )         [Required]      (((n/2)[2a_1 +(n−1)d_1 ])/((n/2)[2a_2 +(n−1)d_2 ]))=((3n+31)/(5n−3))  Our goal: To achieve a_1 +8d_(1 ) in numerator  and a_2 +8d_2  in denominator because we want  to determine relation between T_9  and t_9  .  ⇒((2a_1 +(n−1)d_1 )/(2a_2 +(n−1)d_2 ))=((3n+31)/(5n−3))  ⇒((2[a_1 +(((n−1)/2))d_1 ])/(2[a_2 +(((n−1)/2))d_2 ]))=((3n+31)/(5n−3))  ⇒((a_1 +(((n−1)/2))d_1 )/(a_2 +(((n−1)/2))d_2 ))=((3n+31)/(5n−3))  We want 8 in place of ((n−1)/2)  ∴  ((n−1)/2)=8⇒n=17  ⇒((a_1 +8d_1 )/(a_2 +8d_2 ))=((3(17)+31)/(5(17)−3))=((82)/(82))=1  ∴ T_9 =t_9

$${Without}\:{repeating}\:{understood}\:{things} \\ $$$$\frac{\frac{{n}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{1}} \right]}{\frac{{n}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{2}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{2}} \right]}=\frac{\mathrm{3}{n}+\mathrm{31}}{\mathrm{5}{n}−\mathrm{3}}\:\:\:\:\left[{Given}\right] \\ $$$${a}_{\mathrm{1}} +\mathrm{8}{d}_{\mathrm{1}\:} \left({T}_{\mathrm{9}} \right)={a}_{\mathrm{2}} +\mathrm{8}{d}_{\mathrm{2}} \left({t}_{\mathrm{9}} \right)\:\:\:\:\:\:\:\:\:\left[{Required}\right]\:\:\:\: \\ $$$$\frac{\frac{{n}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{1}} \right]}{\frac{{n}}{\mathrm{2}}\left[\mathrm{2}{a}_{\mathrm{2}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{2}} \right]}=\frac{\mathrm{3}{n}+\mathrm{31}}{\mathrm{5}{n}−\mathrm{3}} \\ $$$$\mathcal{O}{ur}\:{goal}:\:{To}\:{achieve}\:{a}_{\mathrm{1}} +\mathrm{8}{d}_{\mathrm{1}\:} {in}\:{numerator} \\ $$$${and}\:{a}_{\mathrm{2}} +\mathrm{8}{d}_{\mathrm{2}} \:{in}\:{denominator}\:{because}\:{we}\:{want} \\ $$$${to}\:{determine}\:{relation}\:{between}\:{T}_{\mathrm{9}} \:{and}\:{t}_{\mathrm{9}} \:. \\ $$$$\Rightarrow\frac{\mathrm{2}{a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{1}} }{\mathrm{2}{a}_{\mathrm{2}} +\left({n}−\mathrm{1}\right){d}_{\mathrm{2}} }=\frac{\mathrm{3}{n}+\mathrm{31}}{\mathrm{5}{n}−\mathrm{3}} \\ $$$$\Rightarrow\frac{\mathrm{2}\left[{a}_{\mathrm{1}} +\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right){d}_{\mathrm{1}} \right]}{\mathrm{2}\left[{a}_{\mathrm{2}} +\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right){d}_{\mathrm{2}} \right]}=\frac{\mathrm{3}{n}+\mathrm{31}}{\mathrm{5}{n}−\mathrm{3}} \\ $$$$\Rightarrow\frac{{a}_{\mathrm{1}} +\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right){d}_{\mathrm{1}} }{{a}_{\mathrm{2}} +\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right){d}_{\mathrm{2}} }=\frac{\mathrm{3}{n}+\mathrm{31}}{\mathrm{5}{n}−\mathrm{3}} \\ $$$${We}\:{want}\:\mathrm{8}\:{in}\:{place}\:{of}\:\frac{{n}−\mathrm{1}}{\mathrm{2}} \\ $$$$\therefore\:\:\frac{{n}−\mathrm{1}}{\mathrm{2}}=\mathrm{8}\Rightarrow{n}=\mathrm{17} \\ $$$$\Rightarrow\frac{{a}_{\mathrm{1}} +\mathrm{8}{d}_{\mathrm{1}} }{{a}_{\mathrm{2}} +\mathrm{8}{d}_{\mathrm{2}} }=\frac{\mathrm{3}\left(\mathrm{17}\right)+\mathrm{31}}{\mathrm{5}\left(\mathrm{17}\right)−\mathrm{3}}=\frac{\mathrm{82}}{\mathrm{82}}=\mathrm{1} \\ $$$$\therefore\:{T}_{\mathrm{9}} ={t}_{\mathrm{9}} \\ $$$$ \\ $$$$ \\ $$

Commented by prakash jain last updated on 24/Nov/15

This method is simpler.

$$\mathrm{This}\:\mathrm{method}\:\mathrm{is}\:\mathrm{simpler}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com