Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 26192 by abdo imad last updated on 22/Dec/17

find the rsdius of convergence for theserie  Σ_(n=0) ^∝  (x^n /(2n+1)) and calculate its sum s(x)  find the value of  Σ_(n=0) ^∝   (1/(2^n (2n+1)))  .

$${find}\:{the}\:{rsdius}\:{of}\:{convergence}\:{for}\:{theserie} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\propto} \:\frac{{x}^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:{and}\:{calculate}\:{its}\:{sum}\:{s}\left({x}\right) \\ $$$${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)}\:\:. \\ $$

Commented by prakash jain last updated on 22/Dec/17

ratio test  lim_(n→∞) ∣(x^(n+1) /(2n+1))∙((2n)/x^n )∣=∣x∣lim_(n→∞) ((2n)/(2n+1))=∣x∣  ∣x∣<1 ⇒series converges  ∣x∣>1⇒series diverges  ____  x=1  Σ_(n=0) ^∞ (1/(2n+1)) , we know it diverges  radius of convergence ∣x∣<1

$${ratio}\:{test} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\mid\frac{{x}^{{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\centerdot\frac{\mathrm{2}{n}}{{x}^{{n}} }\mid=\mid{x}\mid\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}{n}}{\mathrm{2}{n}+\mathrm{1}}=\mid{x}\mid \\ $$$$\mid{x}\mid<\mathrm{1}\:\Rightarrow\mathrm{series}\:\mathrm{converges} \\ $$$$\mid{x}\mid>\mathrm{1}\Rightarrow\mathrm{series}\:\mathrm{diverges} \\ $$$$\_\_\_\_ \\ $$$${x}=\mathrm{1} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:,\:\mathrm{we}\:\mathrm{know}\:\mathrm{it}\:\mathrm{diverges} \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{convergence}\:\mid{x}\mid<\mathrm{1} \\ $$

Commented by abdo imad last updated on 22/Dec/17

let put  a_n (x)  = ((x^n      )/(2n+1 ))    per x not0  /((a_(n+1) (x))/(a_n (x)))/=/ (x^(n+1) /(2n+3)) ((x^n /(2n+1)))^(−1) /  =/((2n+1)/(2n+3))x/  = ((2n+1)/(2n+3))/x/  and lim_(n−>∝)   / ((a_(n+1) (x))/a_(n(x)) )/= /x/⇒  if  /x/<1 the serie is convergent  if /x/>1 the serie diverge  if x=1 also the serie diverge  if x=−1    Σ_(n≥0)  (((−1)^n )/(2n+1)) is convergent because its a alterne serie  et S(x)=  Σ_(n=0) ^(∝ )  (x^n /(2n+1)) the sum for /x/<1  case1    0<x<1     S(x)  =  Σ_(n=0) ^∝  ((((√x))^(2n) )/(2n+1))  = (1/(√x)) Σ_(n=0) ^∝  ((((√x))^(2n+1) )/(2n+1))  =  (1/(√x)) ϕ((√x))with  ϕ(t)  = Σ_(n=0) ^∝  (t^(2n+1) /(2n+1))   and /t/<1  ∂ϕ/∂t  =  Σ_(n=0) ^∝  t^(2n)    = (1/(1−t^2 )) ⇒  ϕ(t) =∫ (dt/(1−t^2 )) +λ  =(1/2)ln/((1+t)/(1−t))/+λ       λ=ϕ(0)=0⇒  S(x)=  (1/(2(√x)))ln(((1+(√x))/(1−(√x))) )  case2      −1<x<0     S(x)=  Σ_(n=0) ^(∝ )  (((−1)^n ((√(−x)))^(2n) )/(2n+1))  = (1/(√(−x))) Σ_(n=0) ^∝   (((−1)^n ((√(−x)))^(2n+1) )/(2n+1))= (1/(√(−x)))ψ((√(−x)))   with  ψ(t)=  Σ_(n=0) ^∝  (((−1)^n  t^(2n+1) )/(2n+1))   and  /t/<1  ∂ψ/∂t = Σ_(n=0) ^∝  (−1)^n  t^(2n) = Σ_(n=0) ^∝  (−t^2 )^n =   (1/(1+t^2 ))  ⇒  ψ(t)= ∫ (dt/(1+t^2 ))  +κ  =  arctant +κ       k=ψ(0)=0⇒  S(x)= ((artan((√(−x))))/(√(−x)))  .  value of S=  Σ_(n=0) ^∝    (1/(2^n (2n+1)))   we have proved that Σ_(n=0) ^∝   (x^n /(2n+1))  =(1/(2(√x))) ln(((1+(√x))/(1−(√x)))) if 0x<1  we take x=(1/2)⇒      S=  (1/(2(√(1/2))))ln(  ((1+(√(1/2)))/(1−(√(1/2)))))  =(1/(√2)) ln(((1+(√2))/(−1+(√2))))

$${let}\:{put}\:\:{a}_{{n}} \left({x}\right)\:\:=\:\frac{{x}^{{n}} \:\:\:\:\:}{\mathrm{2}{n}+\mathrm{1}\:}\:\:\:\:{per}\:{x}\:{not}\mathrm{0} \\ $$$$/\frac{{a}_{{n}+\mathrm{1}} \left({x}\right)}{{a}_{{n}} \left({x}\right)}/=/\:\frac{{x}^{{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{3}}\:\left(\frac{{x}^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\right)^{−\mathrm{1}} /\:\:=/\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{3}}{x}/\:\:=\:\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}+\mathrm{3}}/{x}/ \\ $$$${and}\:{lim}_{{n}−>\propto} \:\:/\:\frac{{a}_{{n}+\mathrm{1}} \left({x}\right)}{{a}_{{n}\left({x}\right)} }/=\:/{x}/\Rightarrow\:\:{if}\:\:/{x}/<\mathrm{1}\:{the}\:{serie}\:{is}\:{convergent} \\ $$$${if}\:/{x}/>\mathrm{1}\:{the}\:{serie}\:{diverge}\:\:{if}\:{x}=\mathrm{1}\:{also}\:{the}\:{serie}\:{diverge} \\ $$$${if}\:{x}=−\mathrm{1}\:\:\:\:\sum_{{n}\geqslant\mathrm{0}} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:{is}\:{convergent}\:{because}\:{its}\:{a}\:{alterne}\:{serie} \\ $$$${et}\:{S}\left({x}\right)=\:\:\sum_{{n}=\mathrm{0}} ^{\propto\:} \:\frac{{x}^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:{the}\:{sum}\:{for}\:/{x}/<\mathrm{1} \\ $$$${case}\mathrm{1}\:\:\:\:\mathrm{0}<{x}<\mathrm{1}\:\:\:\:\:{S}\left({x}\right)\:\:=\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\frac{\left(\sqrt{{x}}\right)^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}\:\:=\:\frac{\mathrm{1}}{\sqrt{{x}}}\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\frac{\left(\sqrt{{x}}\right)^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\:\:\frac{\mathrm{1}}{\sqrt{{x}}}\:\varphi\left(\sqrt{{x}}\right){with}\:\:\varphi\left({t}\right)\:\:=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\:\:\:{and}\:/{t}/<\mathrm{1} \\ $$$$\partial\varphi/\partial{t}\:\:=\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:{t}^{\mathrm{2}{n}} \:\:\:=\:\frac{\mathrm{1}}{\mathrm{1}−{t}^{\mathrm{2}} }\:\Rightarrow\:\:\varphi\left({t}\right)\:=\int\:\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\:+\lambda \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}/\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}/+\lambda\:\:\:\:\:\:\:\lambda=\varphi\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow\:\:{S}\left({x}\right)=\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}{ln}\left(\frac{\mathrm{1}+\sqrt{{x}}}{\mathrm{1}−\sqrt{{x}}}\:\right) \\ $$$${case}\mathrm{2}\:\:\:\:\:\:−\mathrm{1}<{x}<\mathrm{0}\:\:\:\:\:{S}\left({x}\right)=\:\:\sum_{{n}=\mathrm{0}} ^{\propto\:} \:\frac{\left(−\mathrm{1}\right)^{{n}} \left(\sqrt{−{x}}\right)^{\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\:\frac{\mathrm{1}}{\sqrt{−{x}}}\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \left(\sqrt{−{x}}\right)^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}=\:\frac{\mathrm{1}}{\sqrt{−{x}}}\psi\left(\sqrt{−{x}}\right)\:\:\:{with} \\ $$$$\psi\left({t}\right)=\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\frac{\left(−\mathrm{1}\right)^{{n}} \:{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\:\:\:{and}\:\:/{t}/<\mathrm{1} \\ $$$$\partial\psi/\partial{t}\:=\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\left(−\mathrm{1}\right)^{{n}} \:{t}^{\mathrm{2}{n}} =\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\left(−{t}^{\mathrm{2}} \right)^{{n}} =\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\psi\left({t}\right)=\:\int\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:+\kappa\:\:=\:\:{arctant}\:+\kappa\:\:\:\:\:\:\:{k}=\psi\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow \\ $$$${S}\left({x}\right)=\:\frac{{artan}\left(\sqrt{−{x}}\right)}{\sqrt{−{x}}}\:\:. \\ $$$${value}\:{of}\:{S}=\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} \left(\mathrm{2}{n}+\mathrm{1}\right)}\:\:\:{we}\:{have}\:{proved}\:{that}\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\frac{{x}^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}\:{ln}\left(\frac{\mathrm{1}+\sqrt{{x}}}{\mathrm{1}−\sqrt{{x}}}\right)\:{if}\:\mathrm{0}{x}<\mathrm{1} \\ $$$${we}\:{take}\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\:\:\:\:\:\:{S}=\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}}{ln}\left(\:\:\frac{\mathrm{1}+\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}}{\mathrm{1}−\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}}\right) \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{ln}\left(\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{−\mathrm{1}+\sqrt{\mathrm{2}}}\right) \\ $$$$ \\ $$

Commented by prakash jain last updated on 22/Dec/17

Thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com