Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 26205 by ajfour last updated on 22/Dec/17

Commented by ajfour last updated on 22/Dec/17

Find the area of the uncoloured  region inside triangle in terms  of radii a , and b of the lower  circles.

$${Find}\:{the}\:{area}\:{of}\:{the}\:{uncoloured} \\ $$$${region}\:{inside}\:{triangle}\:{in}\:{terms} \\ $$$${of}\:{radii}\:{a}\:,\:{and}\:{b}\:{of}\:{the}\:{lower} \\ $$$${circles}. \\ $$

Answered by mrW1 last updated on 22/Dec/17

One side of the triangle is 2(a+b).  The other two sides are d and the  radius of the big circle is c.  d=b+c.  (b+c)^2 =(a+b)^2 +(a+c)^2   b^2 +2bc+c^2 =a^2 +b^2 +2ab+a^2 +2ac+c^2   (b−a)c=a(b+a)  ⇒c=(((b+a)a)/(b−a))>0  ⇒b>a    angle of triangle at center of circle c:  tan (θ/2)=((b+a)/(a+c))=((b+a)/(a+(((b+a)a)/(b−a))))=((b^2 −a^2 )/(2ab))  ⇒θ=2tan^(−1) ((b^2 −a^2 )/(2ab))=π−2ϕ    angle of triangle at center of circle b:  tan ϕ=((a+c)/(b+a))=((2ab)/(b^2 −a^2 ))  ⇒ϕ=tan^(−1) ((2ab)/(b^2 −a^2 ))    area of triangle:  A_1 =((2(a+b)(c+a))/2)=(a+b)(((b+a)/(b−a))+1)a=((2ab(a+b))/(b−a))  area of part of triangle a:  A_2 =((πa^2 )/2)  area of parts of triangle b:  A_3 =((2ϕ)/(2π))×πb^2 =ϕb^2 =b^2  tan^(−1) ((2ab)/(b^2 −a^2 ))  area of part of triangle c:  A_4 =(θ/(2π))×πc^2 =((π−2ϕ)/2)×c^2   =((π/2)−tan^(−1) ((2ab)/(b^2 −a^2 )))×((a^2 (a+b)^2 )/((b−a)^2 ))    area of the rest:  A=A_1 −(A_2 +A_3 +A_4 )  =((2ab(a+b))/(b−a))−((πa^2 )/2)−b^2  tan^(−1) ((2ab)/(b^2 −a^2 ))−((π/2)−tan^(−1) ((2ab)/(b^2 −a^2 )))×((a^2 (a+b)^2 )/((b−a)^2 ))  =((2ab(a+b))/(b−a))−((πa^2 )/2)[1+(((a+b)^2 )/((b−a)^2 ))]−[b^2 −((a^2 (a+b)^2 )/((b−a)^2 ))] tan^(−1) ((2ab)/(b^2 −a^2 ))  =((2ab(a+b))/(b−a))−πa^2 [((a^2 +b^2 )/((b−a)^2 ))]−[(((a^2 +b^2 )(b^2 −2ab−a^2 ))/((b−a)^2 ))] tan^(−1) ((2ab)/(b^2 −a^2 ))  ⇒A=((2ab(a+b))/(b−a))−((a^2 +b^2 )/((b−a)^2 ))×[πa^2 +(b^2 −a^2 −2ab) tan^(−1) ((2ab)/(b^2 −a^2 ))]

$${One}\:{side}\:{of}\:{the}\:{triangle}\:{is}\:\mathrm{2}\left({a}+{b}\right). \\ $$$${The}\:{other}\:{two}\:{sides}\:{are}\:{d}\:{and}\:{the} \\ $$$${radius}\:{of}\:{the}\:{big}\:{circle}\:{is}\:{c}. \\ $$$${d}={b}+{c}. \\ $$$$\left({b}+{c}\right)^{\mathrm{2}} =\left({a}+{b}\right)^{\mathrm{2}} +\left({a}+{c}\right)^{\mathrm{2}} \\ $$$${b}^{\mathrm{2}} +\mathrm{2}{bc}+{c}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}+{a}^{\mathrm{2}} +\mathrm{2}{ac}+{c}^{\mathrm{2}} \\ $$$$\left({b}−{a}\right){c}={a}\left({b}+{a}\right) \\ $$$$\Rightarrow{c}=\frac{\left({b}+{a}\right){a}}{{b}−{a}}>\mathrm{0} \\ $$$$\Rightarrow{b}>{a} \\ $$$$ \\ $$$${angle}\:{of}\:{triangle}\:{at}\:{center}\:{of}\:{circle}\:{c}: \\ $$$$\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\frac{{b}+{a}}{{a}+{c}}=\frac{{b}+{a}}{{a}+\frac{\left({b}+{a}\right){a}}{{b}−{a}}}=\frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{ab}} \\ $$$$\Rightarrow\theta=\mathrm{2tan}^{−\mathrm{1}} \frac{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{ab}}=\pi−\mathrm{2}\varphi \\ $$$$ \\ $$$${angle}\:{of}\:{triangle}\:{at}\:{center}\:{of}\:{circle}\:{b}: \\ $$$$\mathrm{tan}\:\varphi=\frac{{a}+{c}}{{b}+{a}}=\frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$\Rightarrow\varphi=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$ \\ $$$${area}\:{of}\:{triangle}: \\ $$$${A}_{\mathrm{1}} =\frac{\mathrm{2}\left({a}+{b}\right)\left({c}+{a}\right)}{\mathrm{2}}=\left({a}+{b}\right)\left(\frac{{b}+{a}}{{b}−{a}}+\mathrm{1}\right){a}=\frac{\mathrm{2}{ab}\left({a}+{b}\right)}{{b}−{a}} \\ $$$${area}\:{of}\:{part}\:{of}\:{triangle}\:{a}: \\ $$$${A}_{\mathrm{2}} =\frac{\pi{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${area}\:{of}\:{parts}\:{of}\:{triangle}\:{b}: \\ $$$${A}_{\mathrm{3}} =\frac{\mathrm{2}\varphi}{\mathrm{2}\pi}×\pi{b}^{\mathrm{2}} =\varphi{b}^{\mathrm{2}} ={b}^{\mathrm{2}} \:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${area}\:{of}\:{part}\:{of}\:{triangle}\:{c}: \\ $$$${A}_{\mathrm{4}} =\frac{\theta}{\mathrm{2}\pi}×\pi{c}^{\mathrm{2}} =\frac{\pi−\mathrm{2}\varphi}{\mathrm{2}}×{c}^{\mathrm{2}} \\ $$$$=\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right)×\frac{{a}^{\mathrm{2}} \left({a}+{b}\right)^{\mathrm{2}} }{\left({b}−{a}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$${area}\:{of}\:{the}\:{rest}: \\ $$$${A}={A}_{\mathrm{1}} −\left({A}_{\mathrm{2}} +{A}_{\mathrm{3}} +{A}_{\mathrm{4}} \right) \\ $$$$=\frac{\mathrm{2}{ab}\left({a}+{b}\right)}{{b}−{a}}−\frac{\pi{a}^{\mathrm{2}} }{\mathrm{2}}−{b}^{\mathrm{2}} \:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }−\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right)×\frac{{a}^{\mathrm{2}} \left({a}+{b}\right)^{\mathrm{2}} }{\left({b}−{a}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}{ab}\left({a}+{b}\right)}{{b}−{a}}−\frac{\pi{a}^{\mathrm{2}} }{\mathrm{2}}\left[\mathrm{1}+\frac{\left({a}+{b}\right)^{\mathrm{2}} }{\left({b}−{a}\right)^{\mathrm{2}} }\right]−\left[{b}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} \left({a}+{b}\right)^{\mathrm{2}} }{\left({b}−{a}\right)^{\mathrm{2}} }\right]\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{2}{ab}\left({a}+{b}\right)}{{b}−{a}}−\pi{a}^{\mathrm{2}} \left[\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\left({b}−{a}\right)^{\mathrm{2}} }\right]−\left[\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left({b}^{\mathrm{2}} −\mathrm{2}{ab}−{a}^{\mathrm{2}} \right)}{\left({b}−{a}\right)^{\mathrm{2}} }\right]\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$\Rightarrow{A}=\frac{\mathrm{2}{ab}\left({a}+{b}\right)}{{b}−{a}}−\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\left({b}−{a}\right)^{\mathrm{2}} }×\left[\pi{a}^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} −\mathrm{2}{ab}\right)\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{2}{ab}}{{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right] \\ $$

Commented by ajfour last updated on 22/Dec/17

Great Sir, Magnificient !

$${Great}\:{Sir},\:{Magnificient}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com