All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 26244 by abdo imad last updated on 22/Dec/17
(xi)1⩽i⩽nnrealnumberpositifswishverfy∑i=1i=nxi=1provethat∑1⩽i⩽nxi2⩾1n.
Commented by abdo imad last updated on 28/Dec/17
forallseconsesofrealnumbers(ai)1⩽i⩽nand(bi)1⩽i⩽npositifs∑i=1i=naibi⩽(∑i=1i=nai2)12.(∑i=1i=nbi2)12(holderinequality)lettakebi=1⇒∑i=1i=nai⩽n(∑i=1i=nai2)12andforaixiweobtain(∑i=i=nxi)2⩽n(∑i=1i=nxi2)⇔1⩽n(∑i=1i=nxi2)⇒∑i=1i=nxi2⩾1n.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com