Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 26324 by ajfour last updated on 24/Dec/17

Commented by ajfour last updated on 24/Dec/17

Q.26256   another solution:

$${Q}.\mathrm{26256}\:\:\:{another}\:{solution}: \\ $$

Commented by mrW1 last updated on 24/Dec/17

That′s correct sir.

$${That}'{s}\:{correct}\:{sir}. \\ $$

Commented by ajfour last updated on 24/Dec/17

thanks sir, but see if you can  comment the same to my  solution of the rotated parabola  question (that i′ve posted here).

$${thanks}\:{sir},\:{but}\:{see}\:{if}\:{you}\:{can} \\ $$$${comment}\:{the}\:{same}\:{to}\:{my} \\ $$$${solution}\:{of}\:{the}\:{rotated}\:{parabola} \\ $$$${question}\:\left({that}\:{i}'{ve}\:{posted}\:{here}\right). \\ $$

Answered by ajfour last updated on 24/Dec/17

Commented by ajfour last updated on 24/Dec/17

v=A(u−a)^2    (h,k)≡(a,0) , θ=60°  after rotation eq. of parabola:  As  v=k+(y−k)cos θ−(x−h)sin θ     u=h+(x−h)cos θ−(y−k)sin θ  (y/2)−(((√3)(x−a))/2)=A[(((x−a))/2)−((y(√3))/2)]^2   it passes through origin, so  ((a(√3))/2)=A((a^2 /4))  ⇒  A=((2(√3))/a)  so eq. of parabola (red one) is  y=(√3)(x−a)+((√3)/a)(x−a+y(√3))^2   and for  blue one, θ=−60° , h=−a  y=−(√3)(x+a)+((√3)/a)(x+a−y(√3))^2   For intersection points i subtract  0=+2(√3)x+((√3)/a)(2x)(−2a+2(√3)y)  ⇒ x=0  or if x≠0  then  y(√3)−a=−(a/2)   ⇒  y_P =y_R =(a/(2(√3)))   for x_P  ,x_R   we substitute in eq. of   red  parabola y=(a/(2(√3)))  ⇒  (a^2 /6)=ax−a^2 +(x−(a/2))^2   or   x^2 =(a^2 /6)+a^2 −(a^2 /4)       x=±(√((11)/(12))) a    And for  x=0  we get  y=−a(√3)+((√3)/a)(y(√3)−a)^2   y=−a(√3)+((3(√3)y^2 )/a)−6y+a(√3)  or  y(3(√3)y−7a)=0  ⇒   y_Q =((7a)/(3(√3)))   so points of intersection are  O(0,0)  ,   Q(0, ((7a)/(3(√3))))  P ((√((11)/(12))) a , (a/(2(√3)))) , R (−(√((11)/(12))) a, (a/(2(√3)))) .

$${v}={A}\left({u}−{a}\right)^{\mathrm{2}} \:\:\:\left({h},{k}\right)\equiv\left({a},\mathrm{0}\right)\:,\:\theta=\mathrm{60}° \\ $$$${after}\:{rotation}\:{eq}.\:{of}\:{parabola}: \\ $$$${As}\:\:{v}={k}+\left({y}−{k}\right)\mathrm{cos}\:\theta−\left({x}−{h}\right)\mathrm{sin}\:\theta \\ $$$$\:\:\:{u}={h}+\left({x}−{h}\right)\mathrm{cos}\:\theta−\left({y}−{k}\right)\mathrm{sin}\:\theta \\ $$$$\frac{{y}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}\left({x}−{a}\right)}{\mathrm{2}}={A}\left[\frac{\left({x}−{a}\right)}{\mathrm{2}}−\frac{{y}\sqrt{\mathrm{3}}}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$$${it}\:{passes}\:{through}\:{origin},\:{so} \\ $$$$\frac{{a}\sqrt{\mathrm{3}}}{\mathrm{2}}={A}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\right)\:\:\Rightarrow\:\:{A}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{{a}} \\ $$$${so}\:{eq}.\:{of}\:{parabola}\:\left({red}\:{one}\right)\:{is} \\ $$$$\boldsymbol{{y}}=\sqrt{\mathrm{3}}\left(\boldsymbol{{x}}−\boldsymbol{{a}}\right)+\frac{\sqrt{\mathrm{3}}}{\boldsymbol{{a}}}\left(\boldsymbol{{x}}−\boldsymbol{{a}}+\boldsymbol{{y}}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$${and}\:{for}\:\:{blue}\:{one},\:\theta=−\mathrm{60}°\:,\:{h}=−{a} \\ $$$$\boldsymbol{{y}}=−\sqrt{\mathrm{3}}\left(\boldsymbol{{x}}+\boldsymbol{{a}}\right)+\frac{\sqrt{\mathrm{3}}}{\boldsymbol{{a}}}\left(\boldsymbol{{x}}+\boldsymbol{{a}}−\boldsymbol{{y}}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$${For}\:{intersection}\:{points}\:{i}\:{subtract} \\ $$$$\mathrm{0}=+\mathrm{2}\sqrt{\mathrm{3}}{x}+\frac{\sqrt{\mathrm{3}}}{{a}}\left(\mathrm{2}{x}\right)\left(−\mathrm{2}{a}+\mathrm{2}\sqrt{\mathrm{3}}{y}\right) \\ $$$$\Rightarrow\:{x}=\mathrm{0}\:\:{or}\:{if}\:{x}\neq\mathrm{0}\:\:{then} \\ $$$${y}\sqrt{\mathrm{3}}−{a}=−\frac{{a}}{\mathrm{2}}\:\:\:\Rightarrow\:\:{y}_{{P}} ={y}_{{R}} =\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\: \\ $$$${for}\:{x}_{{P}} \:,{x}_{{R}} \:\:{we}\:{substitute}\:{in}\:{eq}.\:{of}\: \\ $$$${red}\:\:{parabola}\:{y}=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{6}}={ax}−{a}^{\mathrm{2}} +\left({x}−\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${or}\:\:\:{x}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{6}}+{a}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:\:\:{x}=\pm\sqrt{\frac{\mathrm{11}}{\mathrm{12}}}\:{a}\:\: \\ $$$${And}\:{for}\:\:{x}=\mathrm{0}\:\:{we}\:{get} \\ $$$${y}=−{a}\sqrt{\mathrm{3}}+\frac{\sqrt{\mathrm{3}}}{{a}}\left({y}\sqrt{\mathrm{3}}−{a}\right)^{\mathrm{2}} \\ $$$${y}=−{a}\sqrt{\mathrm{3}}+\frac{\mathrm{3}\sqrt{\mathrm{3}}{y}^{\mathrm{2}} }{{a}}−\mathrm{6}{y}+{a}\sqrt{\mathrm{3}} \\ $$$${or}\:\:{y}\left(\mathrm{3}\sqrt{\mathrm{3}}{y}−\mathrm{7}{a}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{y}}_{\boldsymbol{{Q}}} =\frac{\mathrm{7}{a}}{\mathrm{3}\sqrt{\mathrm{3}}}\: \\ $$$${so}\:{points}\:{of}\:{intersection}\:{are} \\ $$$${O}\left(\mathrm{0},\mathrm{0}\right)\:\:,\:\:\:{Q}\left(\mathrm{0},\:\frac{\mathrm{7}{a}}{\mathrm{3}\sqrt{\mathrm{3}}}\right) \\ $$$${P}\:\left(\sqrt{\frac{\mathrm{11}}{\mathrm{12}}}\:{a}\:,\:\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\right)\:,\:{R}\:\left(−\sqrt{\frac{\mathrm{11}}{\mathrm{12}}}\:{a},\:\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\right)\:. \\ $$

Commented by mrW1 last updated on 24/Dec/17

Very nice sir!

$${Very}\:{nice}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com