Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 26401 by abdo imad last updated on 25/Dec/17

find the sum of    Σ_(n=1) ^∝   (1/(n  2^n ))  .

$${find}\:{the}\:{sum}\:{of}\:\: \\ $$$$\sum_{{n}=\mathrm{1}} ^{\propto} \:\:\frac{\mathrm{1}}{{n}\:\:\mathrm{2}^{{n}} }\:\:. \\ $$

Commented by abdo imad last updated on 25/Dec/17

let put S= Σ_(n=1) ^∝   (1/(n 2^n ))     S(x)= Σ_(n=1) ^∝  (x^n /n)  due to uniform convergence  of that serie  /x/<1 and for hid derivative we have  S^, (x)=   Σ_(n≥1) x^(n−1) = (1/(1−x))   ⇒  S(x) = −ln/1−x/ +k  k=S(0)=0⇒  S(x)=−ln/1−x/  so S= S((1/2))  =ln(2)

$${let}\:{put}\:{S}=\:\sum_{{n}=\mathrm{1}} ^{\propto} \:\:\frac{\mathrm{1}}{{n}\:\mathrm{2}^{{n}} }\:\:\:\:\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{1}} ^{\propto} \:\frac{{x}^{{n}} }{{n}}\:\:{due}\:{to}\:{uniform}\:{convergence} \\ $$$${of}\:{that}\:{serie}\:\:/{x}/<\mathrm{1}\:{and}\:{for}\:{hid}\:{derivative}\:{we}\:{have} \\ $$$${S}^{,} \left({x}\right)=\:\:\:\sum_{{n}\geqslant\mathrm{1}} {x}^{{n}−\mathrm{1}} =\:\frac{\mathrm{1}}{\mathrm{1}−{x}}\:\:\:\Rightarrow\:\:{S}\left({x}\right)\:=\:−{ln}/\mathrm{1}−{x}/\:+{k} \\ $$$${k}={S}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow\:\:{S}\left({x}\right)=−{ln}/\mathrm{1}−{x}/\:\:{so}\:{S}=\:{S}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\:={ln}\left(\mathrm{2}\right) \\ $$

Answered by prakash jain last updated on 25/Dec/17

ln (1−x)=−x−(x^2 /2)−(x^3 /3)−...  put x=(1/2)  ln (1−(1/2))=−Σ_(n=1) ^∞ (1/(n∙2^n ))  ln 1−ln 2=−Σ_(n=1) ^∞ (1/(n∙2^n ))  ln 2=Σ_(n=1) ^∞ (1/(n∙2^n ))  ans: ln 2

$$\mathrm{ln}\:\left(\mathrm{1}−{x}\right)=−{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−... \\ $$$${put}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{ln}\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\centerdot\mathrm{2}^{{n}} } \\ $$$$\mathrm{ln}\:\mathrm{1}−\mathrm{ln}\:\mathrm{2}=−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\centerdot\mathrm{2}^{{n}} } \\ $$$$\mathrm{ln}\:\mathrm{2}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\centerdot\mathrm{2}^{{n}} } \\ $$$${ans}:\:\mathrm{ln}\:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com