Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 26411 by Tinkutara last updated on 25/Dec/17

Show that x^2  + 4xy − 2y^2  + 6x − 12y  − 15 = 0 represents a pair of straight  lines and that these lines together  with the pair of lines x^2  + 4xy − 2y^2   = 0 form a rhombus.

$${Show}\:{that}\:{x}^{\mathrm{2}} \:+\:\mathrm{4}{xy}\:−\:\mathrm{2}{y}^{\mathrm{2}} \:+\:\mathrm{6}{x}\:−\:\mathrm{12}{y} \\ $$$$−\:\mathrm{15}\:=\:\mathrm{0}\:{represents}\:{a}\:{pair}\:{of}\:{straight} \\ $$$${lines}\:{and}\:{that}\:{these}\:{lines}\:{together} \\ $$$${with}\:{the}\:{pair}\:{of}\:{lines}\:{x}^{\mathrm{2}} \:+\:\mathrm{4}{xy}\:−\:\mathrm{2}{y}^{\mathrm{2}} \\ $$$$=\:\mathrm{0}\:{form}\:{a}\:{rhombus}. \\ $$

Answered by ajfour last updated on 25/Dec/17

x^2 +4xy−2y^2 +6x−12y−15=0   determinant ((a,h,g),(h,b,f),(g,f,( c)))= determinant ((1,2,3),(2,(−2),(−6)),(3,(−6),(−15)))  =−6+24−18 =0  hence pair of straight lines.    If both pair of lines having  same two slopes, have a common  angular bisector , then they form  a rhombus. Here as the other  pair passes through origin, we  can prove this by showing origin  is equidistant from the each  line of the first pair.  ⇒ (c_1 /(√(1+m_1 ^2 )))=(c_2 /(√(1+m_2 ^2 )))  or   c_1 ^2 (1+m_2 ^2 )=c_2 ^2 (1+m_1 ^2 )  ..(i)     (y−m_1 x−c_1 )(y−m_2 x−c_2 )=0  c_1 c_2 =((−15)/(−2)) =((15)/2)  ; they are roots of  z^2 +6z+((15)/2)=0  c_1 ,c_2 =((−6±(√(36−30)))/2)=−3±((√6)/2)  m_1 m_2 =(a/b)=−(1/2) ,   m_1 +m_2 =−((2h)/b)=2 ; ⇒ roots of  z^2 −2z−(1/2)=0    m_1 , m_2 =((2±(√(4+2)))/2) =1±((√6)/2)  Also m_1 c_2 +m_2 c_1 =((2g)/b) =(6/(−2))=−3  (1+((√6)/2))(−3−((√6)/2))+(1−((√6)/2))(−3+((√6)/2))  =−3−((√6)/2)−((3(√6))/2)−(3/2)−3+((√6)/2)+((3(√6))/2)−(3/2)  =−9  , so  (1+((√6)/2))(−3+((√6)/2))+(1−((√6)/2))(−3−((√6)/2))  =−(3/2)−(√6)  −(3/2)+(√6) =−3   ....(ii)  hence if m_1 =1−((√6)/2) , c_2 =−3−((√6)/2)  eq. of angular bisector of first  pair of lines are thus  ((y−m_1 x−c_1 )/(√(1+m_1 ^2 )))=±((y−m_2 x−c_2 )/(√(1+m_2 ^2 )))  as to form a rhombus one   bisector line must pass through  origin , so  c_1 (√(1+m_2 ^2 )) =c_2 (√(1+m_1 ^2 ))  as  c_1 c_2  > 0  ⇒ c_1 ^2 −c_2 ^2 =m_1 ^2 c_2 ^2 −m_2 ^2 c_1 ^2   (c_1 +c_2 )(c_1 −c_2 )=(m_1 c_2 +m_2 c_1 )×                                      (m_1 c_2 −m_2 c_1 )  l.h.s. =(−6)((√6)) =−6(√6)  r.h.s.=(−3)(2(√6))=−6(√6)   [see (ii)]  hence the lines form a rhombus.

$${x}^{\mathrm{2}} +\mathrm{4}{xy}−\mathrm{2}{y}^{\mathrm{2}} +\mathrm{6}{x}−\mathrm{12}{y}−\mathrm{15}=\mathrm{0} \\ $$$$\begin{vmatrix}{{a}}&{{h}}&{{g}}\\{{h}}&{{b}}&{{f}}\\{{g}}&{{f}}&{\:{c}}\end{vmatrix}=\begin{vmatrix}{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{2}}&{−\mathrm{2}}&{−\mathrm{6}}\\{\mathrm{3}}&{−\mathrm{6}}&{−\mathrm{15}}\end{vmatrix} \\ $$$$=−\mathrm{6}+\mathrm{24}−\mathrm{18}\:=\mathrm{0} \\ $$$${hence}\:{pair}\:{of}\:{straight}\:{lines}. \\ $$$$ \\ $$$${If}\:{both}\:{pair}\:{of}\:{lines}\:{having} \\ $$$${same}\:{two}\:{slopes},\:{have}\:{a}\:{common} \\ $$$${angular}\:{bisector}\:,\:{then}\:{they}\:{form} \\ $$$${a}\:{rhombus}.\:{Here}\:{as}\:{the}\:{other} \\ $$$${pair}\:{passes}\:{through}\:{origin},\:{we} \\ $$$${can}\:{prove}\:{this}\:{by}\:{showing}\:{origin} \\ $$$${is}\:{equidistant}\:{from}\:{the}\:{each} \\ $$$${line}\:{of}\:{the}\:{first}\:{pair}. \\ $$$$\Rightarrow\:\frac{{c}_{\mathrm{1}} }{\sqrt{\mathrm{1}+{m}_{\mathrm{1}} ^{\mathrm{2}} }}=\frac{{c}_{\mathrm{2}} }{\sqrt{\mathrm{1}+{m}_{\mathrm{2}} ^{\mathrm{2}} }} \\ $$$${or}\:\:\:{c}_{\mathrm{1}} ^{\mathrm{2}} \left(\mathrm{1}+{m}_{\mathrm{2}} ^{\mathrm{2}} \right)={c}_{\mathrm{2}} ^{\mathrm{2}} \left(\mathrm{1}+{m}_{\mathrm{1}} ^{\mathrm{2}} \right)\:\:..\left({i}\right) \\ $$$$\:\:\:\left({y}−{m}_{\mathrm{1}} {x}−{c}_{\mathrm{1}} \right)\left({y}−{m}_{\mathrm{2}} {x}−{c}_{\mathrm{2}} \right)=\mathrm{0} \\ $$$${c}_{\mathrm{1}} {c}_{\mathrm{2}} =\frac{−\mathrm{15}}{−\mathrm{2}}\:=\frac{\mathrm{15}}{\mathrm{2}}\:\:;\:{they}\:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{2}} +\mathrm{6}{z}+\frac{\mathrm{15}}{\mathrm{2}}=\mathrm{0} \\ $$$${c}_{\mathrm{1}} ,{c}_{\mathrm{2}} =\frac{−\mathrm{6}\pm\sqrt{\mathrm{36}−\mathrm{30}}}{\mathrm{2}}=−\mathrm{3}\pm\frac{\sqrt{\mathrm{6}}}{\mathrm{2}} \\ $$$${m}_{\mathrm{1}} {m}_{\mathrm{2}} =\frac{{a}}{{b}}=−\frac{\mathrm{1}}{\mathrm{2}}\:,\: \\ $$$${m}_{\mathrm{1}} +{m}_{\mathrm{2}} =−\frac{\mathrm{2}{h}}{{b}}=\mathrm{2}\:;\:\Rightarrow\:{roots}\:{of} \\ $$$${z}^{\mathrm{2}} −\mathrm{2}{z}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0}\:\: \\ $$$${m}_{\mathrm{1}} ,\:{m}_{\mathrm{2}} =\frac{\mathrm{2}\pm\sqrt{\mathrm{4}+\mathrm{2}}}{\mathrm{2}}\:=\mathrm{1}\pm\frac{\sqrt{\mathrm{6}}}{\mathrm{2}} \\ $$$${Also}\:{m}_{\mathrm{1}} {c}_{\mathrm{2}} +{m}_{\mathrm{2}} {c}_{\mathrm{1}} =\frac{\mathrm{2}{g}}{{b}}\:=\frac{\mathrm{6}}{−\mathrm{2}}=−\mathrm{3} \\ $$$$\left(\mathrm{1}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)\left(−\mathrm{3}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)+\left(\mathrm{1}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)\left(−\mathrm{3}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right) \\ $$$$=−\mathrm{3}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}−\frac{\mathrm{3}\sqrt{\mathrm{6}}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{3}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}+\frac{\mathrm{3}\sqrt{\mathrm{6}}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$=−\mathrm{9}\:\:,\:{so} \\ $$$$\left(\mathrm{1}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)\left(−\mathrm{3}+\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)+\left(\mathrm{1}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)\left(−\mathrm{3}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right) \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}−\sqrt{\mathrm{6}}\:\:−\frac{\mathrm{3}}{\mathrm{2}}+\sqrt{\mathrm{6}}\:=−\mathrm{3}\:\:\:....\left({ii}\right) \\ $$$${hence}\:{if}\:{m}_{\mathrm{1}} =\mathrm{1}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\:,\:{c}_{\mathrm{2}} =−\mathrm{3}−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}} \\ $$$${eq}.\:{of}\:{angular}\:{bisector}\:{of}\:{first} \\ $$$${pair}\:{of}\:{lines}\:{are}\:{thus} \\ $$$$\frac{{y}−{m}_{\mathrm{1}} {x}−{c}_{\mathrm{1}} }{\sqrt{\mathrm{1}+{m}_{\mathrm{1}} ^{\mathrm{2}} }}=\pm\frac{{y}−{m}_{\mathrm{2}} {x}−{c}_{\mathrm{2}} }{\sqrt{\mathrm{1}+{m}_{\mathrm{2}} ^{\mathrm{2}} }} \\ $$$${as}\:{to}\:{form}\:{a}\:{rhombus}\:{one}\: \\ $$$${bisector}\:{line}\:{must}\:{pass}\:{through} \\ $$$${origin}\:,\:{so} \\ $$$${c}_{\mathrm{1}} \sqrt{\mathrm{1}+{m}_{\mathrm{2}} ^{\mathrm{2}} }\:={c}_{\mathrm{2}} \sqrt{\mathrm{1}+{m}_{\mathrm{1}} ^{\mathrm{2}} } \\ $$$${as}\:\:{c}_{\mathrm{1}} {c}_{\mathrm{2}} \:>\:\mathrm{0} \\ $$$$\Rightarrow\:{c}_{\mathrm{1}} ^{\mathrm{2}} −{c}_{\mathrm{2}} ^{\mathrm{2}} ={m}_{\mathrm{1}} ^{\mathrm{2}} {c}_{\mathrm{2}} ^{\mathrm{2}} −{m}_{\mathrm{2}} ^{\mathrm{2}} {c}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\left({c}_{\mathrm{1}} +{c}_{\mathrm{2}} \right)\left({c}_{\mathrm{1}} −{c}_{\mathrm{2}} \right)=\left({m}_{\mathrm{1}} {c}_{\mathrm{2}} +{m}_{\mathrm{2}} {c}_{\mathrm{1}} \right)× \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({m}_{\mathrm{1}} {c}_{\mathrm{2}} −{m}_{\mathrm{2}} {c}_{\mathrm{1}} \right) \\ $$$${l}.{h}.{s}.\:=\left(−\mathrm{6}\right)\left(\sqrt{\mathrm{6}}\right)\:=−\mathrm{6}\sqrt{\mathrm{6}} \\ $$$${r}.{h}.{s}.=\left(−\mathrm{3}\right)\left(\mathrm{2}\sqrt{\mathrm{6}}\right)=−\mathrm{6}\sqrt{\mathrm{6}}\:\:\:\left[{see}\:\left({ii}\right)\right] \\ $$$${hence}\:{the}\:{lines}\:{form}\:{a}\:{rhombus}. \\ $$

Commented by Tinkutara last updated on 25/Dec/17

Thank you Sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com