All Questions Topic List
Coordinate Geometry Questions
Previous in All Question Next in All Question
Previous in Coordinate Geometry Next in Coordinate Geometry
Question Number 26411 by Tinkutara last updated on 25/Dec/17
Showthatx2+4xy−2y2+6x−12y−15=0representsapairofstraightlinesandthattheselinestogetherwiththepairoflinesx2+4xy−2y2=0formarhombus.
Answered by ajfour last updated on 25/Dec/17
x2+4xy−2y2+6x−12y−15=0|ahghbfgfc|=|1232−2−63−6−15|=−6+24−18=0hencepairofstraightlines.Ifbothpairoflineshavingsametwoslopes,haveacommonangularbisector,thentheyformarhombus.Hereastheotherpairpassesthroughorigin,wecanprovethisbyshowingoriginisequidistantfromtheeachlineofthefirstpair.⇒c11+m12=c21+m22orc12(1+m22)=c22(1+m12)..(i)(y−m1x−c1)(y−m2x−c2)=0c1c2=−15−2=152;theyarerootsofz2+6z+152=0c1,c2=−6±36−302=−3±62m1m2=ab=−12,m1+m2=−2hb=2;⇒rootsofz2−2z−12=0m1,m2=2±4+22=1±62Alsom1c2+m2c1=2gb=6−2=−3(1+62)(−3−62)+(1−62)(−3+62)=−3−62−362−32−3+62+362−32=−9,so(1+62)(−3+62)+(1−62)(−3−62)=−32−6−32+6=−3....(ii)henceifm1=1−62,c2=−3−62eq.ofangularbisectoroffirstpairoflinesarethusy−m1x−c11+m12=±y−m2x−c21+m22astoformarhombusonebisectorlinemustpassthroughorigin,soc11+m22=c21+m12asc1c2>0⇒c12−c22=m12c22−m22c12(c1+c2)(c1−c2)=(m1c2+m2c1)×(m1c2−m2c1)l.h.s.=(−6)(6)=−66r.h.s.=(−3)(26)=−66[see(ii)]hencethelinesformarhombus.
Commented by Tinkutara last updated on 25/Dec/17
Thank you Sir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com