Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 26449 by Tinkutara last updated on 25/Dec/17

Transform the equation 5x^2  + 4xy  + 2y^2  − 2x + 4y + 4 = 0 into one  without xy, x and y terms.

$${Transform}\:{the}\:{equation}\:\mathrm{5}{x}^{\mathrm{2}} \:+\:\mathrm{4}{xy} \\ $$$$+\:\mathrm{2}{y}^{\mathrm{2}} \:−\:\mathrm{2}{x}\:+\:\mathrm{4}{y}\:+\:\mathrm{4}\:=\:\mathrm{0}\:{into}\:{one} \\ $$$${without}\:{xy},\:{x}\:{and}\:{y}\:{terms}. \\ $$

Answered by jota@ last updated on 26/Dec/17

  5(x−1)^2 +4(x−1)(y+2)+2(y+2)^2 =1  5u^2 +4uv+2v^2 =1  By rotation tan 2θ=(4/(5−2)) then  sin θ=(1/(√5))  and cos θ=(2/(√5))  5(((2r−s)/(√5)))^2 +4(((2r−s)/(√5)))(((r+2s)/(√5)))+    +2(((r+2s)/(√5)))^2 =1  5(4r^2 −4rs+s^2 )+  4(2r^2 +3rs−2s^2 )+  2(r^2 +4rs+4s^2 )=5      30r^2 +5s^2 =5          6r^2 +s^2 =1

$$ \\ $$$$\mathrm{5}\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\left({x}−\mathrm{1}\right)\left({y}+\mathrm{2}\right)+\mathrm{2}\left({y}+\mathrm{2}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{5}{u}^{\mathrm{2}} +\mathrm{4}{uv}+\mathrm{2}{v}^{\mathrm{2}} =\mathrm{1} \\ $$$${By}\:{rotation}\:\mathrm{tan}\:\mathrm{2}\theta=\frac{\mathrm{4}}{\mathrm{5}−\mathrm{2}}\:{then} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\:\:{and}\:\mathrm{cos}\:\theta=\frac{\mathrm{2}}{\sqrt{\mathrm{5}}} \\ $$$$\mathrm{5}\left(\frac{\mathrm{2}{r}−{s}}{\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} +\mathrm{4}\left(\frac{\mathrm{2}{r}−{s}}{\sqrt{\mathrm{5}}}\right)\left(\frac{{r}+\mathrm{2}{s}}{\sqrt{\mathrm{5}}}\right)+ \\ $$$$\:\:+\mathrm{2}\left(\frac{{r}+\mathrm{2}{s}}{\sqrt{\mathrm{5}}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{5}\left(\mathrm{4}{r}^{\mathrm{2}} −\mathrm{4}{rs}+{s}^{\mathrm{2}} \right)+ \\ $$$$\mathrm{4}\left(\mathrm{2}{r}^{\mathrm{2}} +\mathrm{3}{rs}−\mathrm{2}{s}^{\mathrm{2}} \right)+ \\ $$$$\mathrm{2}\left({r}^{\mathrm{2}} +\mathrm{4}{rs}+\mathrm{4}{s}^{\mathrm{2}} \right)=\mathrm{5} \\ $$$$\:\:\:\:\mathrm{30}{r}^{\mathrm{2}} +\mathrm{5}{s}^{\mathrm{2}} =\mathrm{5}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{6}{r}^{\mathrm{2}} +{s}^{\mathrm{2}} =\mathrm{1} \\ $$$$\:\:\:\:\:\:\: \\ $$

Commented by Tinkutara last updated on 27/Dec/17

Thanks for this but how rotation formula is applied? Isn't it for angle bisectors between pairs of lines passing through origin?

Commented by ajfour last updated on 27/Dec/17

angular bisectors of a pair of straight lines is the locus of points having same distance from the two lines. Rotation wont be helpful.

Commented by Tinkutara last updated on 27/Dec/17

How you replaced u and v from 2nd  line after finding θ?

$${How}\:{you}\:{replaced}\:{u}\:{and}\:{v}\:{from}\:\mathrm{2}{nd} \\ $$$${line}\:{after}\:{finding}\:\theta? \\ $$

Commented by ajfour last updated on 27/Dec/17

Commented by Tinkutara last updated on 27/Dec/17

I got it. Rotation will eliminate xy terms.

Commented by jota@ last updated on 28/Dec/17

find a and b  u=x−a and  v=y−b  with  5u^2 +4uv+2v^2 +k≡5x^2 +4xy+     +2y^2 −2x+4y+4.

$${find}\:{a}\:{and}\:{b} \\ $$$${u}={x}−{a}\:{and}\:\:{v}={y}−{b}\:\:{with} \\ $$$$\mathrm{5}{u}^{\mathrm{2}} +\mathrm{4}{uv}+\mathrm{2}{v}^{\mathrm{2}} +{k}\equiv\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}{xy}+ \\ $$$$\:\:\:+\mathrm{2}{y}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{4}{y}+\mathrm{4}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com