Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26507 by yesaditya22@gmail.com last updated on 26/Dec/17

∫_0 ^Π ((xsinx)/(1+cos^2 x))dx

$$\overset{\Pi} {\int}_{\mathrm{0}} \frac{\mathrm{xsinx}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\mathrm{dx} \\ $$

Answered by kaivan.ahmadi last updated on 26/Dec/17

I=∫_0 ^π ((xsinx)/(2−sin^2 x))dx.  set f(x)=(x/(2−x^2 ))⇒  f(sinx)=f(sin(π−x))⇒  ∫_0 ^π ((xsinx)/(2−sin^2 x))dx=(π/2)∫_0 ^π f(sinx)dx=  (π/2)∫_0 ^π ((sinx)/(1+cos^2 x)) now if u=cosx⇒du=−sinxdx  I=−(π/2)∫_1 ^(−1) (du/(1+u^2 ))=−(π/2)Arctgu]_1 ^(−1) =  −(π/2)(arctg(−1)−arctg1)=  −(π/2)(−(π/4)−(π/4))=(π^2 /4)  ⇒

$$\mathrm{I}=\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{xsinx}}{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}.\:\:\mathrm{set}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}}{\mathrm{2}−\mathrm{x}^{\mathrm{2}} }\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{sinx}\right)=\mathrm{f}\left(\mathrm{sin}\left(\pi−\mathrm{x}\right)\right)\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{xsinx}}{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mathrm{dx}=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \mathrm{f}\left(\mathrm{sinx}\right)\mathrm{dx}= \\ $$$$\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{sinx}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\:\mathrm{now}\:\mathrm{if}\:\mathrm{u}=\mathrm{cosx}\Rightarrow\mathrm{du}=−\mathrm{sinxdx} \\ $$$$\left.\mathrm{I}=−\frac{\pi}{\mathrm{2}}\int_{\mathrm{1}} ^{−\mathrm{1}} \frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }=−\frac{\pi}{\mathrm{2}}\mathrm{Arctgu}\right]_{\mathrm{1}} ^{−\mathrm{1}} = \\ $$$$−\frac{\pi}{\mathrm{2}}\left(\mathrm{arctg}\left(−\mathrm{1}\right)−\mathrm{arctg1}\right)= \\ $$$$−\frac{\pi}{\mathrm{2}}\left(−\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{4}}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\Rightarrow \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com