Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26507 by yesaditya22@gmail.com last updated on 26/Dec/17

∫_0 ^Π ((xsinx)/(1+cos^2 x))dx

Π0xsinx1+cos2xdx

Answered by kaivan.ahmadi last updated on 26/Dec/17

I=∫_0 ^π ((xsinx)/(2−sin^2 x))dx.  set f(x)=(x/(2−x^2 ))⇒  f(sinx)=f(sin(π−x))⇒  ∫_0 ^π ((xsinx)/(2−sin^2 x))dx=(π/2)∫_0 ^π f(sinx)dx=  (π/2)∫_0 ^π ((sinx)/(1+cos^2 x)) now if u=cosx⇒du=−sinxdx  I=−(π/2)∫_1 ^(−1) (du/(1+u^2 ))=−(π/2)Arctgu]_1 ^(−1) =  −(π/2)(arctg(−1)−arctg1)=  −(π/2)(−(π/4)−(π/4))=(π^2 /4)  ⇒

I=0πxsinx2sin2xdx.setf(x)=x2x2f(sinx)=f(sin(πx))0πxsinx2sin2xdx=π20πf(sinx)dx=π20πsinx1+cos2xnowifu=cosxdu=sinxdxI=π211du1+u2=π2Arctgu]11=π2(arctg(1)arctg1)=π2(π4π4)=π24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com