All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 26507 by yesaditya22@gmail.com last updated on 26/Dec/17
∫Π0xsinx1+cos2xdx
Answered by kaivan.ahmadi last updated on 26/Dec/17
I=∫0πxsinx2−sin2xdx.setf(x)=x2−x2⇒f(sinx)=f(sin(π−x))⇒∫0πxsinx2−sin2xdx=π2∫0πf(sinx)dx=π2∫0πsinx1+cos2xnowifu=cosx⇒du=−sinxdxI=−π2∫1−1du1+u2=−π2Arctgu]1−1=−π2(arctg(−1)−arctg1)=−π2(−π4−π4)=π24⇒
Terms of Service
Privacy Policy
Contact: info@tinkutara.com