Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 2655 by Yozzi last updated on 24/Nov/15

Prove by contradiction that there  are no whole number solutions (x,y,z)  to the equation z^2 =x^2 +y^2   where both x and y are odd.

$${Prove}\:{by}\:{contradiction}\:{that}\:{there} \\ $$$${are}\:{no}\:{whole}\:{number}\:{solutions}\:\left({x},{y},{z}\right) \\ $$$${to}\:{the}\:{equation}\:{z}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${where}\:{both}\:{x}\:{and}\:{y}\:{are}\:{odd}. \\ $$

Answered by prakash jain last updated on 24/Nov/15

Let us assume that such a solution exists  j,k,l∈N∪{0}  x=2k+1  y=2j+1  since x,y are odd z must be even  z=2l  z^2 =x^2 +y^2   4l^2 =4k^2 +4k+1+4j^2 +4j+1  l^2 =k^2 +k+j^2 +j+(1/2)  l^2  is a fraction. Contradicts that z is a whole  number or l is a whole number.

$$\mathrm{Let}\:\mathrm{us}\:\mathrm{assume}\:\mathrm{that}\:\mathrm{such}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{exists} \\ $$$${j},{k},{l}\in\mathbb{N}\cup\left\{\mathrm{0}\right\} \\ $$$${x}=\mathrm{2}{k}+\mathrm{1} \\ $$$${y}=\mathrm{2}{j}+\mathrm{1} \\ $$$$\mathrm{since}\:{x},{y}\:{are}\:{odd}\:{z}\:{must}\:{be}\:{even} \\ $$$${z}=\mathrm{2}{l} \\ $$$${z}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$\mathrm{4}{l}^{\mathrm{2}} =\mathrm{4}{k}^{\mathrm{2}} +\mathrm{4}{k}+\mathrm{1}+\mathrm{4}{j}^{\mathrm{2}} +\mathrm{4}{j}+\mathrm{1} \\ $$$${l}^{\mathrm{2}} ={k}^{\mathrm{2}} +{k}+{j}^{\mathrm{2}} +{j}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${l}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{fraction}.\:\mathrm{Contradicts}\:\mathrm{that}\:{z}\:\mathrm{is}\:\mathrm{a}\:\mathrm{whole} \\ $$$$\mathrm{number}\:\mathrm{or}\:{l}\:\mathrm{is}\:\mathrm{a}\:\mathrm{whole}\:\mathrm{number}. \\ $$

Commented by Rasheed Soomro last updated on 24/Nov/15

Inspiring!

$$\mathcal{I}{nspiring}! \\ $$

Answered by Filup last updated on 24/Nov/15

z^2 =x^2 +y^2   z∈Z when:  odd x=2t+1   t∈Z  odd y=2t+3   t∈Z    z^2 =(2t+1)^2 +(2t+3)^2   =(4t^2 +2t+1+(4t^2 +6t+9))  =(8t^2 +8t+10)  =2(4t(t+1)+5)    z=(√(2(4t(t+1)+5)))  =(√4)(√(2t(t+1)+(5/2)))  z=2(√(2t(t+1)+(5/2)))   where  t∈Z  2t(t+1)=whole number      continue?

$${z}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$${z}\in\mathbb{Z}\:\mathrm{when}: \\ $$$${odd}\:{x}=\mathrm{2}{t}+\mathrm{1}\:\:\:{t}\in\mathbb{Z} \\ $$$${odd}\:{y}=\mathrm{2}{t}+\mathrm{3}\:\:\:{t}\in\mathbb{Z} \\ $$$$ \\ $$$${z}^{\mathrm{2}} =\left(\mathrm{2}{t}+\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}{t}+\mathrm{3}\right)^{\mathrm{2}} \\ $$$$=\left(\mathrm{4}{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}+\left(\mathrm{4}{t}^{\mathrm{2}} +\mathrm{6}{t}+\mathrm{9}\right)\right) \\ $$$$=\left(\mathrm{8}{t}^{\mathrm{2}} +\mathrm{8}{t}+\mathrm{10}\right) \\ $$$$=\mathrm{2}\left(\mathrm{4}{t}\left({t}+\mathrm{1}\right)+\mathrm{5}\right) \\ $$$$ \\ $$$${z}=\sqrt{\mathrm{2}\left(\mathrm{4}{t}\left({t}+\mathrm{1}\right)+\mathrm{5}\right)} \\ $$$$=\sqrt{\mathrm{4}}\sqrt{\mathrm{2}{t}\left({t}+\mathrm{1}\right)+\frac{\mathrm{5}}{\mathrm{2}}} \\ $$$${z}=\mathrm{2}\sqrt{\mathrm{2}{t}\left({t}+\mathrm{1}\right)+\frac{\mathrm{5}}{\mathrm{2}}}\:\:\:\mathrm{where}\:\:{t}\in\mathbb{Z} \\ $$$$\mathrm{2}{t}\left({t}+\mathrm{1}\right)=\mathrm{whole}\:\mathrm{number} \\ $$$$ \\ $$$$ \\ $$$${continue}? \\ $$

Commented by Filup last updated on 24/Nov/15

I just realised I was only proving for z.  I mis−read the question. Didn′t  realise you wanted x and y, too...

$$\mathrm{I}\:\mathrm{just}\:\mathrm{realised}\:\mathrm{I}\:\mathrm{was}\:\mathrm{only}\:\mathrm{proving}\:\mathrm{for}\:{z}. \\ $$$$\mathrm{I}\:\mathrm{mis}−\mathrm{read}\:\mathrm{the}\:\mathrm{question}.\:\mathrm{Didn}'\mathrm{t} \\ $$$$\mathrm{realise}\:\mathrm{you}\:\mathrm{wanted}\:{x}\:\mathrm{and}\:{y},\:\mathrm{too}... \\ $$

Commented by prakash jain last updated on 24/Nov/15

You started with x=2t+1 and y=2t+3  the question only said x and y are odd and  did not state that x and y are consecutive  odd numbers.  The last part of your conclusion  z=2(√(2t(t+1)+(5/2)))  is valid since you have  a fraction under the root sign so you  cannot get a whole number.  Also proving for z is sufficient as the question  only requires to prove that condition on  all 3 variables are not satisfied simultaneously.  So proving by assuming 2 variables meet  condition and creating a contradiction on  3rd is sufficient.

$$\mathrm{You}\:\mathrm{started}\:\mathrm{with}\:{x}=\mathrm{2}{t}+\mathrm{1}\:\mathrm{and}\:{y}=\mathrm{2}{t}+\mathrm{3} \\ $$$$\mathrm{the}\:\mathrm{question}\:\mathrm{only}\:\mathrm{said}\:{x}\:\mathrm{and}\:{y}\:\mathrm{are}\:\mathrm{odd}\:\mathrm{and} \\ $$$$\mathrm{did}\:\mathrm{not}\:\mathrm{state}\:\mathrm{that}\:{x}\:\mathrm{and}\:{y}\:\mathrm{are}\:\mathrm{consecutive} \\ $$$$\mathrm{odd}\:\mathrm{numbers}. \\ $$$$\mathrm{The}\:\mathrm{last}\:\mathrm{part}\:\mathrm{of}\:\mathrm{your}\:\mathrm{conclusion} \\ $$$${z}=\mathrm{2}\sqrt{\mathrm{2}{t}\left({t}+\mathrm{1}\right)+\frac{\mathrm{5}}{\mathrm{2}}}\:\:\mathrm{is}\:\mathrm{valid}\:\mathrm{since}\:\mathrm{you}\:\mathrm{have} \\ $$$$\mathrm{a}\:\mathrm{fraction}\:\mathrm{under}\:\mathrm{the}\:\mathrm{root}\:\mathrm{sign}\:\mathrm{so}\:\mathrm{you} \\ $$$$\mathrm{cannot}\:\mathrm{get}\:\mathrm{a}\:\mathrm{whole}\:\mathrm{number}. \\ $$$$\mathrm{Also}\:\mathrm{proving}\:\mathrm{for}\:{z}\:\mathrm{is}\:\mathrm{sufficient}\:\mathrm{as}\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{only}\:\mathrm{requires}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{condition}\:\mathrm{on} \\ $$$$\mathrm{all}\:\mathrm{3}\:\mathrm{variables}\:\mathrm{are}\:\mathrm{not}\:\mathrm{satisfied}\:\mathrm{simultaneously}. \\ $$$$\mathrm{So}\:\mathrm{proving}\:\mathrm{by}\:\mathrm{assuming}\:\mathrm{2}\:\mathrm{variables}\:\mathrm{meet} \\ $$$$\mathrm{condition}\:\mathrm{and}\:\mathrm{creating}\:\mathrm{a}\:\mathrm{contradiction}\:\mathrm{on} \\ $$$$\mathrm{3rd}\:\mathrm{is}\:\mathrm{sufficient}. \\ $$

Commented by Filup last updated on 24/Nov/15

2t+1  and  2t+3 are odd, though?

$$\mathrm{2}{t}+\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{2}{t}+\mathrm{3}\:\mathrm{are}\:\mathrm{odd},\:\mathrm{though}? \\ $$

Commented by prakash jain last updated on 24/Nov/15

Yes. But consecutive odd number. So  the conditions are more restrictive than  required by question.

$$\mathrm{Yes}.\:\mathrm{But}\:\mathrm{consecutive}\:\mathrm{odd}\:\mathrm{number}.\:\mathrm{So} \\ $$$$\mathrm{the}\:\mathrm{conditions}\:\mathrm{are}\:\mathrm{more}\:\mathrm{restrictive}\:\mathrm{than} \\ $$$$\mathrm{required}\:\mathrm{by}\:\mathrm{question}. \\ $$

Commented by Filup last updated on 25/Nov/15

I understand now

$$\mathrm{I}\:\mathrm{understand}\:\mathrm{now} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com