All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 26558 by abdo imad last updated on 26/Dec/17
findthevalueof∫0∞sinxx(1+x2)dx
Commented by abdo imad last updated on 27/Dec/17
letputI=∫0∞sinxx(1+x2)dxweknowthat∫0∞cos(αx)1+x2dx=π2e−αlettakeα⩾0⇒∫01π2e−αdα=−π2[e−α]01=−π2(e−1−1)=π2(1−e−1)andfromanotherside∫01π2e−αdα=∫01(∫0∞cos(αx)1+x2dx)dα=∫0∞(∫01cos(αx)dα)dx1+x2(byfubinitheorem)=∫0∞([sin(αx)x]α=0α=1)dx1+x2=∫0∞sinxx.dx1+x2⇒∫0∞sinxx(1+x2)dx=π2(1−1e).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com