Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26566 by abdo imad last updated on 26/Dec/17

let give Γ(x)= ∫_0 ^∞  t^(x−1) e^(−t) dt with x>0 prove that   lim _(n−>∝) ∫_0 ^n  (1−(t/n))^n t^(x−1) dt  = Γ(x)

$${let}\:{give}\:\Gamma\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\:{with}\:{x}>\mathrm{0}\:{prove}\:{that} \\ $$ $$\:{lim}\:_{{n}−>\propto} \int_{\mathrm{0}} ^{{n}} \:\left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} {t}^{{x}−\mathrm{1}} {dt}\:\:=\:\Gamma\left({x}\right) \\ $$

Commented byabdo imad last updated on 28/Dec/17

let put A_n  = ∫_0 ^n (1−(t/n))^n  t^(x−1) dt  A_n   =  ∫_R f_n (t)dt   where the sequence  f_n =  (1−(t/n))^n  t^(x−1)  χ_([0,n]) (t)we have  f_n −>_(c.s) f(t)= e^(−t)  t^(x−1) on [0,∝[  but /f_n  /≤ ρ(t)= e^(−t )  t^(x−1 ) χ_([0,α)  by theoreme  of vonvergence domine  ∫_R f_n  (t)dt_(n−∝) −−>∫_0 ^∞  e^(−t)  t^(x−1) dx=Γ(x)

$${let}\:{put}\:{A}_{{n}} \:=\:\int_{\mathrm{0}} ^{{n}} \left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} \:{t}^{{x}−\mathrm{1}} {dt} \\ $$ $${A}_{{n}} \:\:=\:\:\int_{\mathbb{R}} {f}_{{n}} \left({t}\right){dt}\:\:\:{where}\:{the}\:{sequence} \\ $$ $${f}_{{n}} =\:\:\left(\mathrm{1}−\frac{{t}}{{n}}\right)^{{n}} \:{t}^{{x}−\mathrm{1}} \:\chi_{\left[\mathrm{0},{n}\right]} \left({t}\right){we}\:{have} \\ $$ $${f}_{{n}} −>_{{c}.{s}} {f}\left({t}\right)=\:{e}^{−{t}} \:{t}^{{x}−\mathrm{1}} {on}\:\left[\mathrm{0},\propto\left[\right.\right. \\ $$ $${but}\:/{f}_{{n}} \:/\leqslant\:\rho\left({t}\right)=\:{e}^{−{t}\:} \:{t}^{{x}−\mathrm{1}\:} \chi_{\left[\mathrm{0},\alpha\right.} \:{by}\:{theoreme} \\ $$ $${of}\:{vonvergence}\:{domine} \\ $$ $$\int_{\mathbb{R}} {f}_{{n}} \:\left({t}\right){dt}_{{n}−\propto} −−>\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}} \:{t}^{{x}−\mathrm{1}} {dx}=\Gamma\left({x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com