Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 26567 by abdo imad last updated on 26/Dec/17

find the value of   Σ_(n≥2)  (((−)^n )/(n(n−1))) x^n

$${find}\:{the}\:{value}\:{of}\:\:\:\sum_{{n}\geqslant\mathrm{2}} \:\frac{\left(−\right)^{{n}} }{{n}\left({n}−\mathrm{1}\right)}\:{x}^{{n}} \\ $$

Commented by prakash jain last updated on 27/Dec/17

a_n =(((−1)^(n+1) )/(n(n+1)))x^(n+1)    n≥1  a_n =(−1)^(n+1) x^(n+1) ((1/n)−(1/(n+1)))  a_n =(−1)^(n+1) (x^(n+1) /n)−(−1)^(n+1) (x^(n+1) /(n+1))  S=x(x−(x^2 /2)+(x^3 /x)−+..)+          (x−(x^2 /2)+(x^3 /3)−(x^4 /4)+−..)−x  S=xln (1+x)+ln (1+x)−x  −1<x≤1

$${a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}\left({n}+\mathrm{1}\right)}{x}^{{n}+\mathrm{1}} \:\:\:{n}\geqslant\mathrm{1} \\ $$$${a}_{{n}} =\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {x}^{{n}+\mathrm{1}} \left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$${a}_{{n}} =\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{{x}^{{n}+\mathrm{1}} }{{n}}−\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$${S}={x}\left({x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{{x}}−+..\right)+ \\ $$$$\:\:\:\:\:\:\:\:\left({x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+−..\right)−{x} \\ $$$${S}={x}\mathrm{ln}\:\left(\mathrm{1}+{x}\right)+\mathrm{ln}\:\left(\mathrm{1}+{x}\right)−{x} \\ $$$$−\mathrm{1}<{x}\leqslant\mathrm{1} \\ $$

Commented by abdo imad last updated on 28/Dec/17

let put S(x)= Σ_(n=2) ^∝  (((−1)^n )/(n(n−1))) x^n  for /x/<1  S(x)=Σ_(n≥2) (−1)^n ( (1/(n−1)) − (1/n))x^n   = −xΣ_(n≥2)  (((−x)^(n−1) )/(n−1)) − Σ_(n≥2)  (((−x)^n )/n)  =−x Σ_(n≥1) (((−x)^n )/n) − Σ_(n≥1)  (((−x)^n )/n) −x  but ln^, (1+u)= (1/(1+u)) = Σ _(n≥0) (−u)^n   ln(1+u)= Σ _(n≥0)  (−1)^(n ) (u^(n+1) /(n+1))  = Σ_(n≥1)   (−1)^(n−1)  (u^n /n)=− Σ_(n≥1) (−1)^n (u^n /n)  ⇒S(x)= xln(1+x)+ln(1+x)−x  =(x+1)lnx −x

$${let}\:{put}\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{2}} ^{\propto} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left({n}−\mathrm{1}\right)}\:{x}^{{n}} \:{for}\:/{x}/<\mathrm{1} \\ $$$${S}\left({x}\right)=\sum_{{n}\geqslant\mathrm{2}} \left(−\mathrm{1}\right)^{{n}} \left(\:\frac{\mathrm{1}}{{n}−\mathrm{1}}\:−\:\frac{\mathrm{1}}{{n}}\right){x}^{{n}} \\ $$$$=\:−{x}\sum_{{n}\geqslant\mathrm{2}} \:\frac{\left(−{x}\right)^{{n}−\mathrm{1}} }{{n}−\mathrm{1}}\:−\:\sum_{{n}\geqslant\mathrm{2}} \:\frac{\left(−{x}\right)^{{n}} }{{n}} \\ $$$$=−{x}\:\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−{x}\right)^{{n}} }{{n}}\:−\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{\left(−{x}\right)^{{n}} }{{n}}\:−{x} \\ $$$${but}\:{ln}^{,} \left(\mathrm{1}+{u}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{u}}\:=\:\Sigma\:_{{n}\geqslant\mathrm{0}} \left(−{u}\right)^{{n}} \\ $$$${ln}\left(\mathrm{1}+{u}\right)=\:\Sigma\:_{{n}\geqslant\mathrm{0}} \:\left(−\mathrm{1}\right)^{{n}\:} \frac{{u}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$$$=\:\sum_{{n}\geqslant\mathrm{1}} \:\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:\frac{{u}^{{n}} }{{n}}=−\:\sum_{{n}\geqslant\mathrm{1}} \left(−\mathrm{1}\right)^{{n}} \frac{{u}^{{n}} }{{n}} \\ $$$$\Rightarrow{S}\left({x}\right)=\:{xln}\left(\mathrm{1}+{x}\right)+{ln}\left(\mathrm{1}+{x}\right)−{x} \\ $$$$=\left({x}+\mathrm{1}\right){lnx}\:−{x} \\ $$$$ \\ $$

Commented by abdo imad last updated on 28/Dec/17

your answer is true prakash

$${your}\:{answer}\:{is}\:{true}\:{prakash} \\ $$

Commented by abdo imad last updated on 28/Dec/17

S(x)=(x+1)ln(x+1)−x

$${S}\left({x}\right)=\left({x}+\mathrm{1}\right){ln}\left({x}+\mathrm{1}\right)−{x} \\ $$

Answered by prakash jain last updated on 28/Dec/17

for x=−1  a_n =(((−1)^(2n+2) )/(n(n+1)))  =(1/(n(n+1)))      n≥1  =((1/n)−(1/(n+1)))  Σ_(n=1) ^∞ a_n =1

$${for}\:{x}=−\mathrm{1} \\ $$$${a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{\mathrm{2}{n}+\mathrm{2}} }{{n}\left({n}+\mathrm{1}\right)}\:\:=\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)}\:\:\:\:\:\:{n}\geqslant\mathrm{1} \\ $$$$=\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} =\mathrm{1} \\ $$

Commented by prakash jain last updated on 27/Dec/17

lim_(x→−1) (1+x)ln (1+x)−x=1

$$\underset{{x}\rightarrow−\mathrm{1}} {\mathrm{lim}}\left(\mathrm{1}+{x}\right)\mathrm{ln}\:\left(\mathrm{1}+{x}\right)−{x}=\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com