Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26569 by abdo imad last updated on 26/Dec/17

find the value of  ∫_0 ^(1 ) x E((1/x))dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}\:} {x}\:{E}\left(\frac{\mathrm{1}}{{x}}\right){dx}\: \\ $$

Commented by abdo imad last updated on 30/Dec/17

let put I= ∫_0 ^1 x E((1/x))dx and by the changement (1/x)=t  I = ∫_1 ^∝ ((E(t))/t^3 ) dt  =lim_(n−>∝)  S_n   with S_n  = Σ_(k=1) ^(k=n−1) ∫_k ^(k+1)  ((E(t))/t^3 )dt  S_n  = Σ_(k=1) ^(k=n−1)  k .∫_k ^(k+1) (dt/t^3 ) = (1/2) Σ_(k=1) ^(k=n−1) k( (1/k^2 ) − (1/((k+1)^2 )))  = (1/2) Σ_(k=1) ^(k=n−1) ((2k+1)/(k(k+1)^2 ))  =Σ_(k=1) ^(k=n−1) (1/((k+1)^2 )) +(1/2) Σ_(k=1) ^(k=n−1)  (1/(k(k+1)^2 ))  but  Σ_(k=1) ^(k=n−1)  (1/(k(k+1)^2 )) = Σ_(k=1) ^(k=n−1)  (1/k) −Σ_(k=1) ^(n−1)  (1/(k+1)) −Σ_(k=1) ^(k=n−1) (1/((k+1)^2 ))  after all calculus we find   S_n  = (1/2) Σ_(k=1) ^(k=n)  (1/k^2 ) −(1/2)( H_n  −H_(n−1)   )but  lim_(n−>∝) H_n −H_(n−1)   =0  and lim_(n−>∝) Σ_(k=1) ^(k=n)   (1/k^2 )= (π^2 /6)  ⇒lim_(n−>∝)   S_n  = I=  (π^2 /(12))  .

$${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}\:{E}\left(\frac{\mathrm{1}}{{x}}\right){dx}\:{and}\:{by}\:{the}\:{changement}\:\frac{\mathrm{1}}{{x}}={t} \\ $$$${I}\:=\:\int_{\mathrm{1}} ^{\propto} \frac{{E}\left({t}\right)}{{t}^{\mathrm{3}} }\:{dt}\:\:={lim}_{{n}−>\propto} \:{S}_{{n}} \:\:{with}\:{S}_{{n}} \:=\:\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{E}\left({t}\right)}{{t}^{\mathrm{3}} }{dt} \\ $$$${S}_{{n}} \:=\:\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \:{k}\:.\int_{{k}} ^{{k}+\mathrm{1}} \frac{{dt}}{{t}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} {k}\left(\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \frac{\mathrm{2}{k}+\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \:\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\:\:{but} \\ $$$$\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \:\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \:\frac{\mathrm{1}}{{k}}\:−\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{{k}+\mathrm{1}}\:−\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${after}\:{all}\:{calculus}\:{we}\:{find}\: \\ $$$${S}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\mathrm{2}}\left(\:{H}_{{n}} \:−{H}_{{n}−\mathrm{1}} \:\:\right){but}\:\:{lim}_{{n}−>\propto} {H}_{{n}} −{H}_{{n}−\mathrm{1}} \:\:=\mathrm{0} \\ $$$${and}\:{lim}_{{n}−>\propto} \sum_{{k}=\mathrm{1}} ^{{k}={n}} \:\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:\Rightarrow{lim}_{{n}−>\propto} \:\:{S}_{{n}} \:=\:{I}=\:\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com