Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26570 by abdo imad last updated on 26/Dec/17

find the value of ∫_0 ^∞ e^(−px) /sinx/dx   with p>0

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\infty} {e}^{−{px}} /{sinx}/{dx}\:\:\:{with}\:{p}>\mathrm{0} \\ $$

Commented byabdo imad last updated on 02/Jan/18

let put I= ∫_0 ^∝  e^(−px) /sinx/dx  I= lim_(n−>∝)  ∫_0 ^(nπ)  e^(−px) /sinx/dx  but   ∫_0 ^(nπ) e^(−px) /sinx/dx= Σ_(k=0) ^(n−1)  ∫_(kπ) ^((k+1)π)  e^(−px) /sinx/dx  = Σ_(k=0) ^(n−1)  ∫_0 ^π   e^(−p(kπ+t)) /sin(kπ+t)/dt ( we do the changement x=kπ +t)  = Σ_(k=0) ^(n−1)  e^(−pkπ)   ∫_0 ^π  e^(−pt) sint dt = Σ_(k=0) ^(n−1)  (e^(−pπ) )^k  ∫_0 ^π  e^(−pt)  sintdt  = ((1−  e^(−npπ) )/(1− e^(−pπ) )) ∫_0 ^π  e^(−pt) sintdt   but   ∫_0 ^π  e^(−pt) sintdt = Im( ∫_0 ^π  e^((i−p)t) dt )          =Im(  [ (1/(i−p)) e^((i−p)t)  ]_0 ^(π ) = ((1+e^(−pπ) )/(1+p^2 ))  I= (1/(1−e^(−pπ) )) . ((1+ e^(−pπ) )/(1+p^2 )) = ((1+ e^(−pπ) )/((1+p^2 )(1−e^(−pπ) ))) .

$${let}\:{put}\:{I}=\:\int_{\mathrm{0}} ^{\propto} \:{e}^{−{px}} /{sinx}/{dx} \\ $$ $${I}=\:{lim}_{{n}−>\propto} \:\int_{\mathrm{0}} ^{{n}\pi} \:{e}^{−{px}} /{sinx}/{dx}\:\:{but}\: \\ $$ $$\int_{\mathrm{0}} ^{{n}\pi} {e}^{−{px}} /{sinx}/{dx}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{{k}\pi} ^{\left({k}+\mathrm{1}\right)\pi} \:{e}^{−{px}} /{sinx}/{dx} \\ $$ $$=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{\mathrm{0}} ^{\pi} \:\:{e}^{−{p}\left({k}\pi+{t}\right)} /{sin}\left({k}\pi+{t}\right)/{dt}\:\left(\:{we}\:{do}\:{the}\:{changement}\:{x}={k}\pi\:+{t}\right) \\ $$ $$=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{e}^{−{pk}\pi} \:\:\int_{\mathrm{0}} ^{\pi} \:{e}^{−{pt}} {sint}\:{dt}\:=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\left({e}^{−{p}\pi} \right)^{{k}} \:\int_{\mathrm{0}} ^{\pi} \:{e}^{−{pt}} \:{sintdt} \\ $$ $$=\:\frac{\mathrm{1}−\:\:{e}^{−{np}\pi} }{\mathrm{1}−\:{e}^{−{p}\pi} }\:\int_{\mathrm{0}} ^{\pi} \:{e}^{−{pt}} {sintdt}\:\:\:{but} \\ $$ $$\:\int_{\mathrm{0}} ^{\pi} \:{e}^{−{pt}} {sintdt}\:=\:{Im}\left(\:\int_{\mathrm{0}} ^{\pi} \:{e}^{\left({i}−{p}\right){t}} {dt}\:\right) \\ $$ $$\: \\ $$ $$\:\:\: \\ $$ $$={Im}\left(\:\:\left[\:\frac{\mathrm{1}}{{i}−{p}}\:{e}^{\left({i}−{p}\right){t}} \:\right]_{\mathrm{0}} ^{\pi\:} =\:\frac{\mathrm{1}+{e}^{−{p}\pi} }{\mathrm{1}+{p}^{\mathrm{2}} }\right. \\ $$ $${I}=\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{p}\pi} }\:.\:\frac{\mathrm{1}+\:{e}^{−{p}\pi} }{\mathrm{1}+{p}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}+\:{e}^{−{p}\pi} }{\left(\mathrm{1}+{p}^{\mathrm{2}} \right)\left(\mathrm{1}−{e}^{−{p}\pi} \right)}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com