Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 26583 by abdo imad last updated on 27/Dec/17

find the decomposition in C[x] then R[x]  for the rationsl fraction  F(x)=  ((1 )/(x^(2n) −1))  .with n integer not 0

$${find}\:{the}\:{decomposition}\:{in}\:\mathbb{C}\left[{x}\right]\:{then}\:\mathbb{R}\left[{x}\right] \\ $$$${for}\:{the}\:{rationsl}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}\:}{{x}^{\mathrm{2}{n}} −\mathrm{1}}\:\:.{with}\:{n}\:{integer}\:{not}\:\mathrm{0} \\ $$

Commented by abdo imad last updated on 28/Dec/17

let find the poles of F   let put z=rcosθ  z^(2n) =1⇔   2nθ  =2kπ and  r=1  so the poles of are   z_k = e^((ikπ)/n)   with  k from [[0,2n−1]]  F(x)  =Σ_(k=0) ^(2n−1)   (α_k /(x−z_k ))    and  α_k =   (1/(2n z_k ^(2n−1) )) = (1/(2n)) z_k   ⇒     F(x)= (1/(2n)) Σ_(k=0) ^(2n−1)  (z_k /(x−z_k ))  is the decomposition of F(x)  in C[x].

$${let}\:{find}\:{the}\:{poles}\:{of}\:{F}\:\:\:{let}\:{put}\:{z}={rcos}\theta \\ $$$${z}^{\mathrm{2}{n}} =\mathrm{1}\Leftrightarrow\:\:\:\mathrm{2}{n}\theta\:\:=\mathrm{2}{k}\pi\:{and}\:\:{r}=\mathrm{1}\:\:{so}\:{the}\:{poles}\:{of}\:{are}\: \\ $$$${z}_{{k}} =\:{e}^{\frac{{ik}\pi}{{n}}} \:\:{with}\:\:{k}\:{from}\:\left[\left[\mathrm{0},\mathrm{2}{n}−\mathrm{1}\right]\right] \\ $$$${F}\left({x}\right)\:\:=\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}−\mathrm{1}} \:\:\frac{\alpha_{{k}} }{{x}−{z}_{{k}} }\:\:\:\:{and}\:\:\alpha_{{k}} =\:\:\:\frac{\mathrm{1}}{\mathrm{2}{n}\:{z}_{{k}} ^{\mathrm{2}{n}−\mathrm{1}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:{z}_{{k}} \\ $$$$\Rightarrow\:\:\:\:\:{F}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}−\mathrm{1}} \:\frac{{z}_{{k}} }{{x}−{z}_{{k}} }\:\:{is}\:{the}\:{decomposition}\:{of}\:{F}\left({x}\right) \\ $$$${in}\:\mathbb{C}\left[{x}\right]. \\ $$

Commented by abdo imad last updated on 28/Dec/17

we have F(x)= (1/(2n)) Σ_(k=0) ^(2n−1)  ((zk)/(x−x_k ))  but  z_0 =1,    z_1 =e^(i(π/n))    ,   z_2 =e^(i((2π)/n))    , z_(n−1) =e^(i((n−1)/n)π)    z_n   =−1  z_(n+1) =e^(i(((n+1)π)/n))   =z_1 ^−       ,  z_(n+2) = e^(i(((n+2)π)/n))   =z_2 ^−    , z_(n−1)   =z_1 ^−   ⇒   F(x)=  (1/(2n))(    (z_0 /(x−z_0 )) + (z_n /(x−z_n )) +   Σ_(k=1) ^(k=n−1) (  (z_k /(x−z_k )) + (z_k ^− /(x−z_k ^− ))))  = (1/(2n))(  (1/(x−1)) −  (1/(x+1)))  +  (1/(2n))Σ_(k=1) ^(n−1) (((z_k  +z_k ^− )x −2)/(x^2  −2 cos(((kπ)/n))x+1))  F(x)=  (1/(2n)) ( (1/(x−1)) − (1/(x+1))) + (1/n) Σ_(k=1) ^(k=n−1) (( cos(((kπ)/n))x −1)/(x^(2 ) −2cos(((kπ)/n))x+1))  is the decomposition of F(x) inside R[x].

$${we}\:{have}\:{F}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}−\mathrm{1}} \:\frac{{zk}}{{x}−{x}_{{k}} }\:\:{but} \\ $$$${z}_{\mathrm{0}} =\mathrm{1},\:\:\:\:{z}_{\mathrm{1}} ={e}^{{i}\frac{\pi}{{n}}} \:\:\:,\:\:\:{z}_{\mathrm{2}} ={e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:,\:{z}_{{n}−\mathrm{1}} ={e}^{{i}\frac{{n}−\mathrm{1}}{{n}}\pi} \:\:\:{z}_{{n}} \:\:=−\mathrm{1} \\ $$$${z}_{{n}+\mathrm{1}} ={e}^{{i}\frac{\left({n}+\mathrm{1}\right)\pi}{{n}}} \:\:={z}_{\mathrm{1}} ^{−} \:\:\:\:\:\:,\:\:{z}_{{n}+\mathrm{2}} =\:{e}^{{i}\frac{\left({n}+\mathrm{2}\right)\pi}{{n}}} \:\:={z}_{\mathrm{2}} ^{−} \:\:\:,\:{z}_{{n}−\mathrm{1}} \:\:={z}_{\mathrm{1}} ^{−} \\ $$$$\Rightarrow\:\:\:{F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\mathrm{2}{n}}\left(\:\:\:\:\frac{{z}_{\mathrm{0}} }{{x}−{z}_{\mathrm{0}} }\:+\:\frac{{z}_{{n}} }{{x}−{z}_{{n}} }\:+\:\:\:\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \left(\:\:\frac{{z}_{{k}} }{{x}−{z}_{{k}} }\:+\:\frac{{z}_{{k}} ^{−} }{{x}−{z}_{{k}} ^{−} }\right)\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}{n}}\left(\:\:\frac{\mathrm{1}}{{x}−\mathrm{1}}\:−\:\:\frac{\mathrm{1}}{{x}+\mathrm{1}}\right)\:\:+\:\:\frac{\mathrm{1}}{\mathrm{2}{n}}\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \frac{\left({z}_{{k}} \:+{z}_{{k}} ^{−} \right){x}\:−\mathrm{2}}{{x}^{\mathrm{2}} \:−\mathrm{2}\:{cos}\left(\frac{{k}\pi}{{n}}\right){x}+\mathrm{1}} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\mathrm{2}{n}}\:\left(\:\frac{\mathrm{1}}{{x}−\mathrm{1}}\:−\:\frac{\mathrm{1}}{{x}+\mathrm{1}}\right)\:+\:\frac{\mathrm{1}}{{n}}\:\sum_{{k}=\mathrm{1}} ^{{k}={n}−\mathrm{1}} \frac{\:{cos}\left(\frac{{k}\pi}{{n}}\right){x}\:−\mathrm{1}}{{x}^{\mathrm{2}\:} −\mathrm{2}{cos}\left(\frac{{k}\pi}{{n}}\right){x}+\mathrm{1}} \\ $$$${is}\:{the}\:{decomposition}\:{of}\:{F}\left({x}\right)\:{inside}\:\mathbb{R}\left[{x}\right]. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com