Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26626 by ajfour last updated on 27/Dec/17

Answered by mrW1 last updated on 28/Dec/17

let′s take point V as origin and VC  as x−axis, then  C(r, 0)  P(r,r)  Eqn. of red parabola is   y=(x^2 /r)  Eqn. of blue circle is  (x−r)^2 +y^2 =r^2     let ∡VCA=θ  x_A =r(1−cos θ)  y_A =−r sin θ  Eqn. of line AB is  ((y−y_A )/(x−x_A ))=k=−tan ((π/2)−θ)=−(1/(tan θ))  or  (y−y_A )tan θ+(x−x_A )=0  (y+r sin θ)tan θ+(x−r+r cos θ)=0    at point B(x_B ,y_B ) of parabola  y′=((2x)/r)=((2x_B )/r)=k=−(1/(tan θ))  ⇒x_B =−(r/(2 tan θ))  y_B =(x_B ^2 /r)=(r/(4 tan^2  θ))  (y_B +r sin θ)tan θ+(x_B −r+r cos θ)=0  ((r/(4 tan^2  θ))+r sin θ)tan θ+(−(r/(2tan θ))−r+r cos θ)=0  ((1/(4 tan^2  θ))+sin θ)tan θ=(1/(2tan θ))+1− cos θ  ((sin^2  θ)/(cos θ))=((cos θ)/(4sin  θ))+1− cos θ  ((1−cos^2  θ)/(cos θ))=((cos θ)/(4sin  θ))+1− cos θ  (1/(cos θ))−cos θ=((cos θ)/(4sin  θ))+1− cos θ  ((1−cos θ)/(cos θ))=((cos θ)/(4sin  θ))  4sin θ=((cos^2  θ)/(1−cos θ))  ⇒θ≈0.6937 (≈39.75°)    Intersection of AB and x−axis is D:  (0+r sin θ)tan θ+(x_D −r+r cos θ)=0  ⇒x_D =−r(1−cos θ−sin θ tan θ)    area of ΔABV:  A_1 =((∣x_D ∣)/2)×(y_B −y_A )=((r^2 (1−cos θ−sin θ tan θ))/2)×((1/(4 tan^2  θ))+sin θ)  area of circle segment VA:  A_2 =(r^2 /2)(θ−sin θ)  area of parabola segment VB:  A_3 =(1/6)∣x_B ∣y_B =(r^2 /(48 tan^3  θ))    area of shaded region:  A=A_1 −A_2 −A_3

$${let}'{s}\:{take}\:{point}\:{V}\:{as}\:{origin}\:{and}\:{VC} \\ $$$${as}\:{x}−{axis},\:{then} \\ $$$${C}\left({r},\:\mathrm{0}\right) \\ $$$${P}\left({r},{r}\right) \\ $$$${Eqn}.\:{of}\:{red}\:{parabola}\:{is}\: \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{{r}} \\ $$$${Eqn}.\:{of}\:{blue}\:{circle}\:{is} \\ $$$$\left({x}−{r}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$ \\ $$$${let}\:\measuredangle{VCA}=\theta \\ $$$${x}_{{A}} ={r}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$${y}_{{A}} =−{r}\:\mathrm{sin}\:\theta \\ $$$${Eqn}.\:{of}\:{line}\:{AB}\:{is} \\ $$$$\frac{{y}−{y}_{{A}} }{{x}−{x}_{{A}} }={k}=−\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}−\theta\right)=−\frac{\mathrm{1}}{\mathrm{tan}\:\theta} \\ $$$${or} \\ $$$$\left({y}−{y}_{{A}} \right)\mathrm{tan}\:\theta+\left({x}−{x}_{{A}} \right)=\mathrm{0} \\ $$$$\left({y}+{r}\:\mathrm{sin}\:\theta\right)\mathrm{tan}\:\theta+\left({x}−{r}+{r}\:\mathrm{cos}\:\theta\right)=\mathrm{0} \\ $$$$ \\ $$$${at}\:{point}\:{B}\left({x}_{{B}} ,{y}_{{B}} \right)\:{of}\:{parabola} \\ $$$${y}'=\frac{\mathrm{2}{x}}{{r}}=\frac{\mathrm{2}{x}_{{B}} }{{r}}={k}=−\frac{\mathrm{1}}{\mathrm{tan}\:\theta} \\ $$$$\Rightarrow{x}_{{B}} =−\frac{{r}}{\mathrm{2}\:\mathrm{tan}\:\theta} \\ $$$${y}_{{B}} =\frac{{x}_{{B}} ^{\mathrm{2}} }{{r}}=\frac{{r}}{\mathrm{4}\:\mathrm{tan}^{\mathrm{2}} \:\theta} \\ $$$$\left({y}_{{B}} +{r}\:\mathrm{sin}\:\theta\right)\mathrm{tan}\:\theta+\left({x}_{{B}} −{r}+{r}\:\mathrm{cos}\:\theta\right)=\mathrm{0} \\ $$$$\left(\frac{{r}}{\mathrm{4}\:\mathrm{tan}^{\mathrm{2}} \:\theta}+{r}\:\mathrm{sin}\:\theta\right)\mathrm{tan}\:\theta+\left(−\frac{{r}}{\mathrm{2tan}\:\theta}−{r}+{r}\:\mathrm{cos}\:\theta\right)=\mathrm{0} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{tan}^{\mathrm{2}} \:\theta}+\mathrm{sin}\:\theta\right)\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\mathrm{2tan}\:\theta}+\mathrm{1}−\:\mathrm{cos}\:\theta \\ $$$$\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{\mathrm{cos}\:\theta}=\frac{\mathrm{cos}\:\theta}{\mathrm{4sin}\:\:\theta}+\mathrm{1}−\:\mathrm{cos}\:\theta \\ $$$$\frac{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{cos}\:\theta}=\frac{\mathrm{cos}\:\theta}{\mathrm{4sin}\:\:\theta}+\mathrm{1}−\:\mathrm{cos}\:\theta \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}\:\theta}−\mathrm{cos}\:\theta=\frac{\mathrm{cos}\:\theta}{\mathrm{4sin}\:\:\theta}+\mathrm{1}−\:\mathrm{cos}\:\theta \\ $$$$\frac{\mathrm{1}−\mathrm{cos}\:\theta}{\mathrm{cos}\:\theta}=\frac{\mathrm{cos}\:\theta}{\mathrm{4sin}\:\:\theta} \\ $$$$\mathrm{4sin}\:\theta=\frac{\mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{1}−\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\theta\approx\mathrm{0}.\mathrm{6937}\:\left(\approx\mathrm{39}.\mathrm{75}°\right) \\ $$$$ \\ $$$${Intersection}\:{of}\:{AB}\:{and}\:{x}−{axis}\:{is}\:{D}: \\ $$$$\left(\mathrm{0}+{r}\:\mathrm{sin}\:\theta\right)\mathrm{tan}\:\theta+\left({x}_{{D}} −{r}+{r}\:\mathrm{cos}\:\theta\right)=\mathrm{0} \\ $$$$\Rightarrow{x}_{{D}} =−{r}\left(\mathrm{1}−\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\:\mathrm{tan}\:\theta\right) \\ $$$$ \\ $$$${area}\:{of}\:\Delta{ABV}: \\ $$$${A}_{\mathrm{1}} =\frac{\mid{x}_{{D}} \mid}{\mathrm{2}}×\left({y}_{{B}} −{y}_{{A}} \right)=\frac{{r}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\:\mathrm{tan}\:\theta\right)}{\mathrm{2}}×\left(\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{tan}^{\mathrm{2}} \:\theta}+\mathrm{sin}\:\theta\right) \\ $$$${area}\:{of}\:{circle}\:{segment}\:{VA}: \\ $$$${A}_{\mathrm{2}} =\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\theta−\mathrm{sin}\:\theta\right) \\ $$$${area}\:{of}\:{parabola}\:{segment}\:{VB}: \\ $$$${A}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{6}}\mid{x}_{{B}} \mid{y}_{{B}} =\frac{{r}^{\mathrm{2}} }{\mathrm{48}\:\mathrm{tan}^{\mathrm{3}} \:\theta} \\ $$$$ \\ $$$${area}\:{of}\:{shaded}\:{region}: \\ $$$${A}={A}_{\mathrm{1}} −{A}_{\mathrm{2}} −{A}_{\mathrm{3}} \\ $$

Commented by ajfour last updated on 27/Dec/17

how do you get the parabola  segment A_3  so very easily Sir ?

$${how}\:{do}\:{you}\:{get}\:{the}\:{parabola} \\ $$$${segment}\:{A}_{\mathrm{3}} \:{so}\:{very}\:{easily}\:{Sir}\:? \\ $$

Commented by ajfour last updated on 28/Dec/17

Thank you sir, understood, and  indebted!

$${Thank}\:{you}\:{sir},\:{understood},\:{and} \\ $$$${indebted}! \\ $$

Commented by ajfour last updated on 27/Dec/17

thank you sir, even this much felt good to follow.., the area i understand can be done in three parts.

Commented by mrW1 last updated on 27/Dec/17

Generally we look at a parabola  of n−th order, i.e. y=kx^n   We have  A_1 =((ah)/(n+1))  A_2 =((1/2)−(1/(n+1)))ah=(((n−1)ah)/(2(n+1)))

$${Generally}\:{we}\:{look}\:{at}\:{a}\:{parabola} \\ $$$${of}\:{n}−{th}\:{order},\:{i}.{e}.\:{y}={kx}^{{n}} \\ $$$${We}\:{have} \\ $$$${A}_{\mathrm{1}} =\frac{{ah}}{{n}+\mathrm{1}} \\ $$$${A}_{\mathrm{2}} =\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right){ah}=\frac{\left({n}−\mathrm{1}\right){ah}}{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$

Commented by ajfour last updated on 27/Dec/17

no sir instead i mean  shaded area=A_3 −△BED+    △ADU−A_2  .

$${no}\:{sir}\:{instead}\:{i}\:{mean} \\ $$$${shaded}\:{area}={A}_{\mathrm{3}} −\bigtriangleup{BED}+ \\ $$$$\:\:\bigtriangleup{ADU}−\mathrm{A}_{\mathrm{2}} \:. \\ $$

Commented by mrW1 last updated on 27/Dec/17

Commented by mrW1 last updated on 27/Dec/17

You can do this sir.  But following is what I used in my answer.

$${You}\:{can}\:{do}\:{this}\:{sir}. \\ $$$${But}\:{following}\:{is}\:{what}\:{I}\:{used}\:{in}\:{my}\:{answer}. \\ $$

Commented by mrW1 last updated on 27/Dec/17

Commented by mrW1 last updated on 28/Dec/17

It is easy to remember, if it′s a  straight, A_1 =((ah)/2), if it is a parabola,  it must be less, so A_1 =((ah)/3), etc.

$${It}\:{is}\:{easy}\:{to}\:{remember},\:{if}\:{it}'{s}\:{a} \\ $$$${straight},\:{A}_{\mathrm{1}} =\frac{{ah}}{\mathrm{2}},\:{if}\:{it}\:{is}\:{a}\:{parabola}, \\ $$$${it}\:{must}\:{be}\:{less},\:{so}\:{A}_{\mathrm{1}} =\frac{{ah}}{\mathrm{3}},\:{etc}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com