Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26738 by goswamisubhabrata007@gmail.com last updated on 28/Dec/17

Commented by prakash jain last updated on 28/Dec/17

∫e^x (log x+(1/x))dx  ∫e^x [f(x)+f′(x)]dx  =∫e^x f(x)dx+∫e^x f′(x)dx  =f(x)e^x −∫e^x f′(x)dx+∫e^x f′(x)dx  =f(x)e^x +C  hence  ∫e^x (log x+(1/x))dx=e^x log x+C

ex(logx+1x)dxex[f(x)+f(x)]dx=exf(x)dx+exf(x)dx=f(x)exexf(x)dx+exf(x)dx=f(x)ex+Chenceex(logx+1x)dx=exlogx+C

Answered by Penguin last updated on 28/Dec/17

∫(e^x /x)(xln(x)+1)dx=∫e^x ln(x)dx+∫(e^x /x)dx     solve ∫e^x ln(x)dx via integration by parts  u=e^x         v=(1/x)  u′=e^x        v′=ln(x)  ∫e^x ln(x)dx=∫uv′=uv−∫u′v  =e^x ln(x)−∫(e^x /x)dx     ∴∫e^x ln(x)dx+∫(e^x /x)dx=e^x ln(x)+∫(e^x /x)dx−∫(e^x /x)dx  ∴∫(e^x /x)(xln(x)+1)dx=e^x ln(x)+c

exx(xln(x)+1)dx=exln(x)dx+exxdxsolveexln(x)dxviaintegrationbypartsu=exv=1xu=exv=ln(x)exln(x)dx=uv=uvuv=exln(x)exxdxexln(x)dx+exxdx=exln(x)+exxdxexxdxexx(xln(x)+1)dx=exln(x)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com