All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 26738 by goswamisubhabrata007@gmail.com last updated on 28/Dec/17
Commented by prakash jain last updated on 28/Dec/17
∫ex(logx+1x)dx∫ex[f(x)+f′(x)]dx=∫exf(x)dx+∫exf′(x)dx=f(x)ex−∫exf′(x)dx+∫exf′(x)dx=f(x)ex+Chence∫ex(logx+1x)dx=exlogx+C
Answered by Penguin last updated on 28/Dec/17
∫exx(xln(x)+1)dx=∫exln(x)dx+∫exxdxsolve∫exln(x)dxviaintegrationbypartsu=exv=1xu′=exv′=ln(x)∫exln(x)dx=∫uv′=uv−∫u′v=exln(x)−∫exxdx∴∫exln(x)dx+∫exxdx=exln(x)+∫exxdx−∫exxdx∴∫exx(xln(x)+1)dx=exln(x)+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com