Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 26749 by abdo imad last updated on 28/Dec/17

let give  S_n  =  Σ_(1≤i<j≤n)    (1/(i^2 j^2 ))   find lim_(n−>∝)   S_n   .

letgiveSn=1i<jn1i2j2findlimn>∝Sn.

Commented byabdo imad last updated on 02/Jan/18

we have ( Σ_(k=1) ^(k=n)  (1/k^2 ) )^2 = Σ_(k=1) ^n  (1/k^4 )  + 2 Σ_(1≤i<j≤n)   (1/(i^(2 ) j^2 ))  S_n = (1/2)(( Σ_(k=1) ^n  (1/k^2 ))^2 − Σ_(k=1) ^(k=n)  (1/k^4 ) )  ⇒lim_(n−>∝)  S_n  = (1/2)(  (ξ(2))^2 −ξ(4))  we know that ξ(2)= (π^2 /6)  and  ξ(4) =  (π^4 /(90))  ⇒ lim_(n−>∝)  S_n    = (1/2)(  (π^4 /(36)) − (π^4 /(90))  ).

wehave(k=1k=n1k2)2=k=1n1k4+21i<jn1i2j2 Sn=12((k=1n1k2)2k=1k=n1k4) limn>∝Sn=12((ξ(2))2ξ(4))weknowthatξ(2)=π26 andξ(4)=π490 limn>∝Sn=12(π436π490).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com