All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 26749 by abdo imad last updated on 28/Dec/17
letgiveSn=∑1⩽i<j⩽n1i2j2findlimn−>∝Sn.
Commented byabdo imad last updated on 02/Jan/18
wehave(∑k=1k=n1k2)2=∑k=1n1k4+2∑1⩽i<j⩽n1i2j2 Sn=12((∑k=1n1k2)2−∑k=1k=n1k4) ⇒limn−>∝Sn=12((ξ(2))2−ξ(4))weknowthatξ(2)=π26 andξ(4)=π490 ⇒limn−>∝Sn=12(π436−π490).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com