Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 2675 by prakash jain last updated on 24/Nov/15

Bases on suggestion from Filup and some  discussion on that I am suggesting that we  sequence, series and related function as a  topic for this month.  ζ(x)=Σ_(n=1) ^∞ n^(−x) , x∈R, x>1  Show that  ζ(x)=(1/(Γ(x)))∫_0 ^∞  (t^(x−1) /(e^t −1))dt

$$\mathrm{Bases}\:\mathrm{on}\:\mathrm{suggestion}\:\mathrm{from}\:\mathrm{Filup}\:\mathrm{and}\:\mathrm{some} \\ $$ $$\mathrm{discussion}\:\mathrm{on}\:\mathrm{that}\:\mathrm{I}\:\mathrm{am}\:\mathrm{suggesting}\:\mathrm{that}\:\mathrm{we} \\ $$ $$\mathrm{sequence},\:\mathrm{series}\:\mathrm{and}\:\mathrm{related}\:\mathrm{function}\:\mathrm{as}\:\mathrm{a} \\ $$ $$\mathrm{topic}\:\mathrm{for}\:\mathrm{this}\:\mathrm{month}. \\ $$ $$\zeta\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{n}^{−{x}} ,\:{x}\in\mathbb{R},\:{x}>\mathrm{1} \\ $$ $$\mathrm{Show}\:\mathrm{that} \\ $$ $$\zeta\left({x}\right)=\frac{\mathrm{1}}{\Gamma\left({x}\right)}\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{x}−\mathrm{1}} }{{e}^{{t}} −\mathrm{1}}\mathrm{d}{t} \\ $$

Commented byprakash jain last updated on 24/Nov/15

ζ−Riemann zeta function  Γ−Gamma function  These 2 functions were mentioned as part  of some of the questions earlier.  For this question only consider real numbers  although the functions are defined for  complex numbers as well.

$$\zeta−\mathrm{Riemann}\:\mathrm{zeta}\:\mathrm{function} \\ $$ $$\Gamma−\mathrm{Gamma}\:\mathrm{function} \\ $$ $$\mathrm{These}\:\mathrm{2}\:\mathrm{functions}\:\mathrm{were}\:\mathrm{mentioned}\:\mathrm{as}\:\mathrm{part} \\ $$ $$\mathrm{of}\:\mathrm{some}\:\mathrm{of}\:\mathrm{the}\:\mathrm{questions}\:\mathrm{earlier}. \\ $$ $$\mathrm{For}\:\mathrm{this}\:\mathrm{question}\:\mathrm{only}\:\mathrm{consider}\:\mathrm{real}\:\mathrm{numbers} \\ $$ $$\mathrm{although}\:\mathrm{the}\:\mathrm{functions}\:\mathrm{are}\:\mathrm{defined}\:\mathrm{for} \\ $$ $$\mathrm{complex}\:\mathrm{numbers}\:\mathrm{as}\:\mathrm{well}. \\ $$

Commented byRasheed Soomro last updated on 24/Nov/15

I have only heard the names of reimann zeta and  gamma functions! Anyway no harm in trying!  By the way who will be the judge?

$$\mathcal{I}\:{have}\:{only}\:{heard}\:{the}\:{names}\:{of}\:{reimann}\:{zeta}\:{and} \\ $$ $${gamma}\:{functions}!\:{Anyway}\:{no}\:{harm}\:{in}\:{trying}! \\ $$ $${By}\:{the}\:{way}\:{who}\:{will}\:{be}\:{the}\:{judge}? \\ $$

Commented byprakash jain last updated on 24/Nov/15

This question was not meant to be a  challenge just learning details of a few  things that got mentioned earlier.

$$\mathrm{This}\:\mathrm{question}\:\mathrm{was}\:\mathrm{not}\:\mathrm{meant}\:\mathrm{to}\:\mathrm{be}\:\mathrm{a} \\ $$ $$\mathrm{challenge}\:\mathrm{just}\:\mathrm{learning}\:\mathrm{details}\:\mathrm{of}\:\mathrm{a}\:\mathrm{few} \\ $$ $$\mathrm{things}\:\mathrm{that}\:\mathrm{got}\:\mathrm{mentioned}\:\mathrm{earlier}. \\ $$

Commented byprakash jain last updated on 24/Nov/15

123456 is most knowledgeable among us.  (s)he will post the challenge at some point  and judge us.    In any case regular Q and A continues as  usual from everyone.

$$\mathrm{123456}\:\mathrm{is}\:\mathrm{most}\:\mathrm{knowledgeable}\:\mathrm{among}\:\mathrm{us}. \\ $$ $$\left(\mathrm{s}\right)\mathrm{he}\:\mathrm{will}\:\mathrm{post}\:\mathrm{the}\:\mathrm{challenge}\:\mathrm{at}\:\mathrm{some}\:\mathrm{point} \\ $$ $$\mathrm{and}\:\mathrm{judge}\:\mathrm{us}. \\ $$ $$ \\ $$ $$\mathrm{In}\:\mathrm{any}\:\mathrm{case}\:\mathrm{regular}\:\mathrm{Q}\:\mathrm{and}\:\mathrm{A}\:\mathrm{continues}\:\mathrm{as} \\ $$ $$\mathrm{usual}\:\mathrm{from}\:\mathrm{everyone}. \\ $$

Commented byYozzi last updated on 24/Nov/15

Cool.

$${Cool}. \\ $$

Commented byYozzi last updated on 24/Nov/15

Is it dx or dt in the expression ∫_0 ^∞ (t^(x−1) /(e^t −1))dx?

$${Is}\:{it}\:{dx}\:{or}\:{dt}\:{in}\:{the}\:{expression}\:\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{x}−\mathrm{1}} }{{e}^{{t}} −\mathrm{1}}{dx}? \\ $$

Commented byprakash jain last updated on 24/Nov/15

dt corrected.

$$\mathrm{d}{t}\:\mathrm{corrected}. \\ $$

Commented by123456 last updated on 01/Dec/15

24/12

$$\mathrm{24}/\mathrm{12} \\ $$

Answered by Yozzi last updated on 24/Nov/15

(t^(x−1) /(e^t −1))=((t^(x−1) e^(−t) )/(1−e^(−t) ))  For t>0,  ∣e^(−t) ∣<1. (1/(1−e^(−t) )) is the the  sum of an infinite G.P with first term  1 and common ratio e^(−t) .  ∴ (1/(1−e^(−t) ))=1+e^(−t) +e^(−2t) +e^(−3t) +...  ∴((t^(x−1) e^(−t) )/(1−e^(−t) ))=t^(x−1) e^(−t) +t^(x−1) e^(−2t) +t^(x−1) e^(−3t) +...  ((t^(x−1) e^(−t) )/(1−e^(−t) ))=Σ_(r=1) ^∞ t^(x−1) e^(−rt)   Let I=∫_0 ^∞ (t^(x−1) /(e^t −1))dt=∫_0 ^∞ (Σ_(r=1) ^∞ t^(x−1) e^(−rt) )dt  I=Σ_(r=1) ^∞ (∫_0 ^∞ t^(x−1) e^(−rt) dt)  let u=rt⇒t=(1/r)u⇒(1/r)du=dt  At t=0,u=0. As t→∞, u→∞ for r>0.  ∴t^(x−1) =r^(1−x) u^(x−1)   ∴∫_0 ^∞ t^(x−1) e^(−rt) dt=∫_0 ^∞ r^(1−x) u^(x−1) e^(−u) ×(1/r)du                                =r^(−x) ∫_0 ^∞ u^(x−1) e^(−u) du  The gamma function Γ(x) defined  for x>0 is expressible as                      Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt.  ∴∫_0 ^∞ t^(x−1) e^(−rt) dt=r^(−x) Γ(x)  ∴I=Γ(x)×Σ_(r=1) ^∞ r^(−x)   But, ζ(x)=Σ_(r=1) ^∞ r^(−x)   ,x∈R,x>1.  ∴I=Γ(x)ζ(x)⇒ζ(x)=(1/(Γ(x)))∫_0 ^∞ (t^(x−1) /(e^t −1))dt

$$\frac{{t}^{{x}−\mathrm{1}} }{{e}^{{t}} −\mathrm{1}}=\frac{{t}^{{x}−\mathrm{1}} {e}^{−{t}} }{\mathrm{1}−{e}^{−{t}} } \\ $$ $${For}\:{t}>\mathrm{0},\:\:\mid{e}^{−{t}} \mid<\mathrm{1}.\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{t}} }\:{is}\:{the}\:{the} \\ $$ $${sum}\:{of}\:{an}\:{infinite}\:{G}.{P}\:{with}\:{first}\:{term} \\ $$ $$\mathrm{1}\:{and}\:{common}\:{ratio}\:{e}^{−{t}} . \\ $$ $$\therefore\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{t}} }=\mathrm{1}+{e}^{−{t}} +{e}^{−\mathrm{2}{t}} +{e}^{−\mathrm{3}{t}} +... \\ $$ $$\therefore\frac{{t}^{{x}−\mathrm{1}} {e}^{−{t}} }{\mathrm{1}−{e}^{−{t}} }={t}^{{x}−\mathrm{1}} {e}^{−{t}} +{t}^{{x}−\mathrm{1}} {e}^{−\mathrm{2}{t}} +{t}^{{x}−\mathrm{1}} {e}^{−\mathrm{3}{t}} +... \\ $$ $$\frac{{t}^{{x}−\mathrm{1}} {e}^{−{t}} }{\mathrm{1}−{e}^{−{t}} }=\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}{t}^{{x}−\mathrm{1}} {e}^{−{rt}} \\ $$ $${Let}\:{I}=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{x}−\mathrm{1}} }{{e}^{{t}} −\mathrm{1}}{dt}=\int_{\mathrm{0}} ^{\infty} \left(\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}{t}^{{x}−\mathrm{1}} {e}^{−{rt}} \right){dt} \\ $$ $${I}=\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{rt}} {dt}\right) \\ $$ $${let}\:{u}={rt}\Rightarrow{t}=\frac{\mathrm{1}}{{r}}{u}\Rightarrow\frac{\mathrm{1}}{{r}}{du}={dt} \\ $$ $${At}\:{t}=\mathrm{0},{u}=\mathrm{0}.\:{As}\:{t}\rightarrow\infty,\:{u}\rightarrow\infty\:{for}\:{r}>\mathrm{0}. \\ $$ $$\therefore{t}^{{x}−\mathrm{1}} ={r}^{\mathrm{1}−{x}} {u}^{{x}−\mathrm{1}} \\ $$ $$\therefore\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{rt}} {dt}=\int_{\mathrm{0}} ^{\infty} {r}^{\mathrm{1}−{x}} {u}^{{x}−\mathrm{1}} {e}^{−{u}} ×\frac{\mathrm{1}}{{r}}{du} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={r}^{−{x}} \int_{\mathrm{0}} ^{\infty} {u}^{{x}−\mathrm{1}} {e}^{−{u}} {du} \\ $$ $${The}\:{gamma}\:{function}\:\Gamma\left({x}\right)\:{defined} \\ $$ $${for}\:{x}>\mathrm{0}\:{is}\:{expressible}\:{as} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}. \\ $$ $$\therefore\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{rt}} {dt}={r}^{−{x}} \Gamma\left({x}\right) \\ $$ $$\therefore{I}=\Gamma\left({x}\right)×\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}{r}^{−{x}} \\ $$ $${But},\:\zeta\left({x}\right)=\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}{r}^{−{x}} \:\:,{x}\in\mathbb{R},{x}>\mathrm{1}. \\ $$ $$\therefore{I}=\Gamma\left({x}\right)\zeta\left({x}\right)\Rightarrow\zeta\left({x}\right)=\frac{\mathrm{1}}{\Gamma\left({x}\right)}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{x}−\mathrm{1}} }{{e}^{{t}} −\mathrm{1}}{dt}\: \\ $$ $$ \\ $$

Commented by123456 last updated on 24/Nov/15

nice

$$\mathrm{nice} \\ $$

Commented byFilup last updated on 25/Nov/15

Awesome! I had no idea how to do this  one! So simple!

$${Awesome}!\:\mathrm{I}\:\mathrm{had}\:\mathrm{no}\:\mathrm{idea}\:\mathrm{how}\:\mathrm{to}\:\mathrm{do}\:\mathrm{this} \\ $$ $$\mathrm{one}!\:{S}\mathrm{o}\:\mathrm{simple}! \\ $$

Commented byRasheed Soomro last updated on 25/Nov/15

2nd line:  For t>0,  ∣e^(−t) ∣_(−) <1. (1/(1−e^(−t) )) is the the  Couldn′t we write e^(−t)  instead of ∣e^(−t) ∣  Or there is any specific reason for this?

$$\mathrm{2}{nd}\:{line}: \\ $$ $${For}\:{t}>\mathrm{0},\:\:\underset{−} {\mid{e}^{−{t}} \mid}<\mathrm{1}.\:\frac{\mathrm{1}}{\mathrm{1}−{e}^{−{t}} }\:{is}\:{the}\:{the} \\ $$ $${Couldn}'{t}\:{we}\:{write}\:{e}^{−{t}} \:{instead}\:{of}\:\mid{e}^{−{t}} \mid \\ $$ $${Or}\:{there}\:{is}\:{any}\:{specific}\:{reason}\:{for}\:{this}? \\ $$

Commented byYozzi last updated on 25/Nov/15

It′s written like that to specifically  indicate that the convergence  condition for an infinite geometric  series is satisfied. So expressions  of the form                                (c/(1−dx))    represent the sum of an infinite   geometric series under the condition  that ∣dx∣<1⇒∣x∣<1/d  (d≠0). The  series is then deduced to be of the form  cΣ_(n=1) ^∞ (dx)^(n−1) =c{1+dx+d^2 x^2 +d^3 x^3 +...}                           =c+cdx+cd^2 x^2 +cd^3 x^3 +...  If dx=0 because d=0 or x=0  we get (c/(1−dx))=(c/(1−0))=c which is equal  to cΣ_(n=1) ^∞ 0^(n−1) =c{1+0+0+0+...}=c.

$${It}'{s}\:{written}\:{like}\:{that}\:{to}\:{specifically} \\ $$ $${indicate}\:{that}\:{the}\:{convergence} \\ $$ $${condition}\:{for}\:{an}\:{infinite}\:{geometric} \\ $$ $${series}\:{is}\:{satisfied}.\:{So}\:{expressions} \\ $$ $${of}\:{the}\:{form}\: \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{c}}{\mathrm{1}−{dx}}\:\: \\ $$ $${represent}\:{the}\:{sum}\:{of}\:{an}\:{infinite}\: \\ $$ $${geometric}\:{series}\:{under}\:{the}\:{condition} \\ $$ $${that}\:\mid{dx}\mid<\mathrm{1}\Rightarrow\mid{x}\mid<\mathrm{1}/{d}\:\:\left({d}\neq\mathrm{0}\right).\:{The} \\ $$ $${series}\:{is}\:{then}\:{deduced}\:{to}\:{be}\:{of}\:{the}\:{form} \\ $$ $${c}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left({dx}\right)^{{n}−\mathrm{1}} ={c}\left\{\mathrm{1}+{dx}+{d}^{\mathrm{2}} {x}^{\mathrm{2}} +{d}^{\mathrm{3}} {x}^{\mathrm{3}} +...\right\} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={c}+{cdx}+{cd}^{\mathrm{2}} {x}^{\mathrm{2}} +{cd}^{\mathrm{3}} {x}^{\mathrm{3}} +... \\ $$ $${If}\:{dx}=\mathrm{0}\:{because}\:{d}=\mathrm{0}\:{or}\:{x}=\mathrm{0} \\ $$ $${we}\:{get}\:\frac{{c}}{\mathrm{1}−{dx}}=\frac{{c}}{\mathrm{1}−\mathrm{0}}={c}\:{which}\:{is}\:{equal} \\ $$ $${to}\:{c}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{0}^{{n}−\mathrm{1}} ={c}\left\{\mathrm{1}+\mathrm{0}+\mathrm{0}+\mathrm{0}+...\right\}={c}. \\ $$ $$\:\:\:\:\:\:\:\:\:\: \\ $$ $$ \\ $$ $$ \\ $$

Commented byRasheed Soomro last updated on 25/Nov/15

Th^a nkS

$$\mathcal{T}{h}^{{a}} {nk}\mathcal{S} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com