Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26759 by abdo imad last updated on 29/Dec/17

find  the value of   ∫_0 ^( ∝)   (dx/((x+1)(x+2)(x+3))) .

$${find}\:\:{the}\:{value}\:{of}\:\:\:\int_{\mathrm{0}} ^{\:\propto} \:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)}\:. \\ $$

Commented by abdo imad last updated on 30/Dec/17

we use the changement x+2=t  I= ∫_0 ^∝   (dx/((x+1)(x+2)(x+3)))= ∫_2 ^(∝ )   (dt/((t−1)t(t+1))) and after decomposition  I = ∫_2 ^∝ (  (1/(2(t−1))) − (1/t) + (1/(2(t+1))))dt  = (1/2) ∫_2 ^∝ ( (1/(t−1)) + (1/(t+1)) )dt − ∫_2 ^∝  (dt/t)  = (1/2) ∫_2 ^∝  ((2t)/(t^2 −1))dt − ∫_2 ^∝ (dt/t)=[ (1/2)ln/t^2 −1/ −ln/t/ ]_2 ^∝   =[ ln(((√(/t^2 −1/))/(/t/)) ]_2 ^∝ = [ln(((√(t^2 −1))/t))]_2 ^∝ =−ln(((√3)/2))  I= ln(2) −(1/2) ln(3).

$${we}\:{use}\:{the}\:{changement}\:{x}+\mathrm{2}={t} \\ $$$${I}=\:\int_{\mathrm{0}} ^{\propto} \:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)}=\:\int_{\mathrm{2}} ^{\propto\:} \:\:\frac{{dt}}{\left({t}−\mathrm{1}\right){t}\left({t}+\mathrm{1}\right)}\:{and}\:{after}\:{decomposition} \\ $$$${I}\:=\:\int_{\mathrm{2}} ^{\propto} \left(\:\:\frac{\mathrm{1}}{\mathrm{2}\left({t}−\mathrm{1}\right)}\:−\:\frac{\mathrm{1}}{{t}}\:+\:\frac{\mathrm{1}}{\mathrm{2}\left({t}+\mathrm{1}\right)}\right){dt} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{2}} ^{\propto} \left(\:\frac{\mathrm{1}}{{t}−\mathrm{1}}\:+\:\frac{\mathrm{1}}{{t}+\mathrm{1}}\:\right){dt}\:−\:\int_{\mathrm{2}} ^{\propto} \:\frac{{dt}}{{t}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{2}} ^{\propto} \:\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\:−\:\int_{\mathrm{2}} ^{\propto} \frac{{dt}}{{t}}=\left[\:\frac{\mathrm{1}}{\mathrm{2}}{ln}/{t}^{\mathrm{2}} −\mathrm{1}/\:−{ln}/{t}/\:\right]_{\mathrm{2}} ^{\propto} \\ $$$$=\left[\:{ln}\left(\frac{\sqrt{/{t}^{\mathrm{2}} −\mathrm{1}/}}{/{t}/}\:\right]_{\mathrm{2}} ^{\propto} =\:\left[{ln}\left(\frac{\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}{{t}}\right)\right]_{\mathrm{2}} ^{\propto} =−{ln}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right. \\ $$$${I}=\:{ln}\left(\mathrm{2}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\left(\mathrm{3}\right). \\ $$

Answered by ajfour last updated on 29/Dec/17

(1/((x+1)(x+2)(x+3)))=(1/(t(t^2 −1)))  if x+2=t  let t=sec^2 θ   ⇒  dt=2sec^2 θtan θ  ∫_2 ^(  α+2) (dt/(t(t^2 −1)))=2∫_θ_1  ^( θ_2 ) cot θdθ  =2ln ∣((sin θ_2 )/(sin θ_1 ))∣=ln (((1−(1/(α+2)))/(1−(1/2))))  =ln (2−(2/(α+2))) .

$$\frac{\mathrm{1}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}+\mathrm{3}\right)}=\frac{\mathrm{1}}{{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$${if}\:{x}+\mathrm{2}={t} \\ $$$${let}\:{t}=\mathrm{sec}\:^{\mathrm{2}} \theta\:\:\:\Rightarrow\:\:{dt}=\mathrm{2sec}\:^{\mathrm{2}} \theta\mathrm{tan}\:\theta \\ $$$$\int_{\mathrm{2}} ^{\:\:\alpha+\mathrm{2}} \frac{{dt}}{{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}=\mathrm{2}\int_{\theta_{\mathrm{1}} } ^{\:\theta_{\mathrm{2}} } \mathrm{cot}\:\theta{d}\theta \\ $$$$=\mathrm{2ln}\:\mid\frac{\mathrm{sin}\:\theta_{\mathrm{2}} }{\mathrm{sin}\:\theta_{\mathrm{1}} }\mid=\mathrm{ln}\:\left(\frac{\mathrm{1}−\frac{\mathrm{1}}{\alpha+\mathrm{2}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}\right) \\ $$$$=\mathrm{ln}\:\left(\mathrm{2}−\frac{\mathrm{2}}{\alpha+\mathrm{2}}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com