Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 26772 by Rasheed.Sindhi last updated on 29/Dec/17

With a center on a given circle of  radius r ,an arc has been drawn in order  to divide the circle in two equal  (in area) parts.  What is the radius of the arc in terms  of  r (radius of given circle)?

$$\mathrm{With}\:\mathrm{a}\:\mathrm{center}\:\boldsymbol{\mathrm{on}}\:\mathrm{a}\:\mathrm{given}\:\mathrm{circle}\:\mathrm{of} \\ $$$$\mathrm{radius}\:\mathrm{r}\:,\mathrm{an}\:\mathrm{arc}\:\mathrm{has}\:\mathrm{been}\:\mathrm{drawn}\:\mathrm{in}\:\mathrm{order} \\ $$$$\mathrm{to}\:\mathrm{divide}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{in}\:\mathrm{two}\:\mathrm{equal} \\ $$$$\left(\mathrm{in}\:\mathrm{area}\right)\:\mathrm{parts}. \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\:\mathrm{r}\:\left(\mathrm{radius}\:\mathrm{of}\:\mathrm{given}\:\mathrm{circle}\right)?\: \\ $$

Answered by mrW1 last updated on 29/Dec/17

Let′s say the radius of the circle is  r and the radius of the arc is R.  The angle of the arc is θ.  r cos (θ/2)=(R/2)  ⇒R=2r cos (θ/2)  (ϕ/2)=π−2×(θ/2)  ⇒ϕ=2π−2θ    area of segment of arc BC:  A_1 =(R^2 /2)(θ−sin θ)=2r^2 cos^2  (θ/2)(θ−sin θ)  area of segment of circle BAC:  A_2 =(r^2 /2)[2π−2θ−sin (2π−2θ)]=r^2 (π−θ+sin θ cos θ)  A_1 +A_2 =((πr^2 )/2)  2r^2 cos^2  (θ/2)(θ−sin θ)+r^2 (π−θ+sin θ cos θ)=((πr^2 )/2)  (cos θ+1)(θ−sin θ)+(π/2)−θ+sin θ cos θ=0  sin θ−θ cos θ=(π/2)  ⇒θ≈1.9057 (109.2°)  ⇒R=2rcos (θ/2)≈1.16r    If  the arc divides the area of the  circle in ratio λ:1, then the  equation is  sin θ−θ cos θ=(1−λ)π  ⇒λ=1−((sin θ−θ cos θ)/π)  cos (θ/2)=(R/(2r))=γ  ⇒θ=2 cos^(−1) γ  sin (θ/2)=(√(1−γ^2 ))  ⇒sin θ=2γ(√(1−γ^2 ))  ⇒cos θ=2γ^2 −1  ⇒λ=f(γ)=1−((2γ(√(1−γ^2 ))−2(2γ^2 −1) cos^(−1) γ)/π)

$${Let}'{s}\:{say}\:{the}\:{radius}\:{of}\:{the}\:{circle}\:{is} \\ $$$${r}\:{and}\:{the}\:{radius}\:{of}\:{the}\:{arc}\:{is}\:{R}. \\ $$$${The}\:{angle}\:{of}\:{the}\:{arc}\:{is}\:\theta. \\ $$$${r}\:\mathrm{cos}\:\frac{\theta}{\mathrm{2}}=\frac{{R}}{\mathrm{2}} \\ $$$$\Rightarrow{R}=\mathrm{2}{r}\:\mathrm{cos}\:\frac{\theta}{\mathrm{2}} \\ $$$$\frac{\varphi}{\mathrm{2}}=\pi−\mathrm{2}×\frac{\theta}{\mathrm{2}} \\ $$$$\Rightarrow\varphi=\mathrm{2}\pi−\mathrm{2}\theta \\ $$$$ \\ $$$${area}\:{of}\:{segment}\:{of}\:{arc}\:{BC}: \\ $$$${A}_{\mathrm{1}} =\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\theta−\mathrm{sin}\:\theta\right)=\mathrm{2}{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\left(\theta−\mathrm{sin}\:\theta\right) \\ $$$${area}\:{of}\:{segment}\:{of}\:{circle}\:{BAC}: \\ $$$${A}_{\mathrm{2}} =\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left[\mathrm{2}\pi−\mathrm{2}\theta−\mathrm{sin}\:\left(\mathrm{2}\pi−\mathrm{2}\theta\right)\right]={r}^{\mathrm{2}} \left(\pi−\theta+\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\right) \\ $$$${A}_{\mathrm{1}} +{A}_{\mathrm{2}} =\frac{\pi{r}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{2}{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\left(\theta−\mathrm{sin}\:\theta\right)+{r}^{\mathrm{2}} \left(\pi−\theta+\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\right)=\frac{\pi{r}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\left(\mathrm{cos}\:\theta+\mathrm{1}\right)\left(\theta−\mathrm{sin}\:\theta\right)+\frac{\pi}{\mathrm{2}}−\theta+\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\mathrm{sin}\:\theta−\theta\:\mathrm{cos}\:\theta=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\theta\approx\mathrm{1}.\mathrm{9057}\:\left(\mathrm{109}.\mathrm{2}°\right) \\ $$$$\Rightarrow{R}=\mathrm{2}{r}\mathrm{cos}\:\frac{\theta}{\mathrm{2}}\approx\mathrm{1}.\mathrm{16}{r} \\ $$$$ \\ $$$${If}\:\:{the}\:{arc}\:{divides}\:{the}\:{area}\:{of}\:{the} \\ $$$${circle}\:{in}\:{ratio}\:\lambda:\mathrm{1},\:{then}\:{the} \\ $$$${equation}\:{is} \\ $$$$\mathrm{sin}\:\theta−\theta\:\mathrm{cos}\:\theta=\left(\mathrm{1}−\lambda\right)\pi \\ $$$$\Rightarrow\lambda=\mathrm{1}−\frac{\mathrm{sin}\:\theta−\theta\:\mathrm{cos}\:\theta}{\pi} \\ $$$$\mathrm{cos}\:\frac{\theta}{\mathrm{2}}=\frac{{R}}{\mathrm{2}{r}}=\gamma \\ $$$$\Rightarrow\theta=\mathrm{2}\:\mathrm{cos}^{−\mathrm{1}} \gamma \\ $$$$\mathrm{sin}\:\frac{\theta}{\mathrm{2}}=\sqrt{\mathrm{1}−\gamma^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\mathrm{2}\gamma\sqrt{\mathrm{1}−\gamma^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\mathrm{2}\gamma^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\lambda={f}\left(\gamma\right)=\mathrm{1}−\frac{\mathrm{2}\gamma\sqrt{\mathrm{1}−\gamma^{\mathrm{2}} }−\mathrm{2}\left(\mathrm{2}\gamma^{\mathrm{2}} −\mathrm{1}\right)\:\mathrm{cos}^{−\mathrm{1}} \gamma}{\pi} \\ $$

Commented by mrW1 last updated on 29/Dec/17

Commented by Rasheed.Sindhi last updated on 29/Dec/17

Great!   ThanX  a Lot Sir!

$$\mathcal{G}{reat}!\: \\ $$$$\mathcal{T}{han}\mathcal{X}\:\:{a}\:\mathcal{L}{ot}\:\mathcal{S}{ir}! \\ $$

Commented by mrW1 last updated on 29/Dec/17

Thank you too Sir!  But I′m not able to find an analytic  solution.

$${Thank}\:{you}\:{too}\:{Sir}! \\ $$$${But}\:{I}'{m}\:{not}\:{able}\:{to}\:{find}\:{an}\:{analytic} \\ $$$${solution}.\: \\ $$

Commented by mrW1 last updated on 30/Dec/17

Sir, do you have any idea if such an  arc can be drawn only with ruler and  compass? I can hardly believe that it  is possible.

$${Sir},\:{do}\:{you}\:{have}\:{any}\:{idea}\:{if}\:{such}\:{an} \\ $$$${arc}\:{can}\:{be}\:{drawn}\:{only}\:{with}\:{ruler}\:{and} \\ $$$${compass}?\:{I}\:{can}\:{hardly}\:{believe}\:{that}\:{it} \\ $$$${is}\:{possible}. \\ $$

Commented by Rasheed.Sindhi last updated on 30/Dec/17

To determine area of sector when  coordinates of three specifying  points are given. What′s the   formula?

$$\mathrm{To}\:\mathrm{determine}\:\mathrm{area}\:\mathrm{of}\:\mathrm{sector}\:\mathrm{when} \\ $$$$\mathrm{coordinates}\:\mathrm{of}\:\mathrm{three}\:\mathrm{specifying} \\ $$$$\mathrm{points}\:\mathrm{are}\:\mathrm{given}.\:\mathrm{What}'\mathrm{s}\:\mathrm{the}\: \\ $$$$\mathrm{formula}? \\ $$

Commented by Rasheed.Sindhi last updated on 30/Dec/17

Sorry it′s not only matter of   sector area!

$$\mathrm{Sorry}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{only}\:\mathrm{matter}\:\mathrm{of}\: \\ $$$$\mathrm{sector}\:\mathrm{area}! \\ $$

Commented by mrW1 last updated on 30/Dec/17

I don′t know such a formula.

$${I}\:{don}'{t}\:{know}\:{such}\:{a}\:{formula}. \\ $$

Commented by Rasheed.Sindhi last updated on 30/Dec/17

No sir, I myself am not sure!  Mr prakash jain can certainly  say something.

$$\mathrm{No}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{myself}\:\mathrm{am}\:\mathrm{not}\:\mathrm{sure}! \\ $$$$\mathrm{Mr}\:\mathrm{prakash}\:\mathrm{jain}\:\mathrm{can}\:\mathrm{certainly} \\ $$$$\mathrm{say}\:\mathrm{something}. \\ $$

Commented by prakash jain last updated on 30/Dec/17

I am still thinking about that  problem.

$$\mathrm{I}\:\mathrm{am}\:\mathrm{still}\:\mathrm{thinking}\:\mathrm{about}\:\mathrm{that} \\ $$$$\mathrm{problem}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com