Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 26781 by shubhabrata04@gmail.com last updated on 29/Dec/17

Commented by prakash jain last updated on 29/Dec/17

∫_0 ^1 (log (1−x)−log x)dx  =∫_0 ^1 log (1−x)dx−∫_0 ^1 log xdx  in part ii x=1−u dx=−du  =∫_0 ^1 log (1−x)dx−∫_1 ^0 log (1−u)(−du)  =∫_0 ^1 log (1−x)dx+∫_1 ^0 log (1−u)(du)  =∫_0 ^1 log (1−x)dx−∫_0 ^( 1) log (1−u)(du)  =0

01(log(1x)logx)dx=01log(1x)dx01logxdxinpartiix=1udx=du=01log(1x)dx10log(1u)(du)=01log(1x)dx+10log(1u)(du)=01log(1x)dx01log(1u)(du)=0

Commented by malwaan last updated on 29/Dec/17

to Mr Prakash  I think that at the forth   line the sign is(+)  and the answer is  ∫_0 ^1 log(1−x)dx +  ∫_1 ^0 log(1−u)du  =2∫_0 ^0  log(1−x)dx=0  Am I right ???

toMrPrakashIthinkthatattheforthlinethesignis(+)andtheansweris01log(1x)dx+10log(1u)du=200log(1x)dx=0AmIright???

Commented by prakash jain last updated on 29/Dec/17

Yes in the next line I swapped  the limits. So we are subtracting  same integral.    ∫_0 ^1 f(x)dx=−∫_1 ^0 f(x)dx  also  ∫_0 ^1 f(x)dx+∫_1 ^0 f(x)dx=∫_0 ^0 f(x)dx

YesinthenextlineIswappedthelimits.Sowearesubtractingsameintegral.01f(x)dx=10f(x)dxalso01f(x)dx+10f(x)dx=00f(x)dx

Commented by malwaan last updated on 31/Dec/17

Thank you so much

Thankyousomuch

Answered by lee last updated on 29/Dec/17

=∫_0 ^1 {log(1−x)−logx}dx  using that ∫logxdx=xlogx−x+c  =[−(1−x)log(1−x)+(1−x)]_0 ^1   −[xlogx−x]_0 ^1   =−1+1=0

=01{log(1x)logx}dxusingthatlogxdx=xlogxx+c=[(1x)log(1x)+(1x)]01[xlogxx]01=1+1=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com